login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279902
T(n,k)=Number of nXk 0..2 arrays with no element unequal to a strict majority of its king-move neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
7
0, 0, 0, 2, 4, 2, 2, 6, 6, 2, 8, 8, 9, 8, 8, 14, 18, 20, 20, 18, 14, 36, 36, 43, 56, 43, 36, 36, 74, 78, 94, 156, 156, 94, 78, 74, 168, 160, 213, 428, 601, 428, 213, 160, 168, 358, 338, 456, 1208, 2006, 2006, 1208, 456, 338, 358, 780, 700, 1003, 3316, 7383, 8384, 7383, 3316
OFFSET
1,4
COMMENTS
Table starts
...0...0....2.....2......8......14.......36.......74......168.......358
...0...4....6.....8.....18......36.......78......160......338.......700
...2...6....9....20.....43......94......213......456.....1003......2146
...2...8...20....56....156.....428.....1208.....3316.....9168.....25200
...8..18...43...156....601....2006.....7383....25400....89693....315334
..14..36...94...428...2006....8384....38532...165560...732174...3256516
..36..78..213..1208...7383...38532...226675..1231402..6889841..38738950
..74.160..456..3316..25400..165560..1231402..8386164.58985354.419342264
.168.338.1003..9168..89693..732174..6889841.58985354
.358.700.2146.25200.315334.3256516.38738950
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) +3*a(n-2) -4*a(n-3) -4*a(n-4) for n>5
k=2: a(n) = 2*a(n-1) +3*a(n-2) -4*a(n-3) -4*a(n-4) for n>7
k=3: a(n) = 2*a(n-1) +3*a(n-2) -4*a(n-3) -4*a(n-4) for n>7
k=4: [order 20] for n>23
k=5: [order 24] for n>27
EXAMPLE
Some solutions for n=4 k=4
..0..0..1..1. .0..0..0..0. .0..0..0..0. .0..1..1..1. .0..0..0..0
..0..0..1..1. .0..0..0..0. .1..0..0..0. .0..0..1..1. .0..0..0..0
..0..0..1..1. .1..1..1..0. .2..2..2..2. .0..0..1..1. .0..0..1..1
..0..2..1..1. .1..1..1..1. .2..2..2..2. .0..0..1..1. .0..1..1..1
CROSSREFS
Column 1 is 2*A219754(n+1).
Sequence in context: A055097 A258751 A280233 * A331004 A278540 A280161
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 22 2016
STATUS
approved