login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165720
Integers of the form k*(k+11)/10.
2
6, 8, 18, 21, 35, 39, 57, 62, 84, 90, 116, 123, 153, 161, 195, 204, 242, 252, 294, 305, 351, 363, 413, 426, 480, 494, 552, 567, 629, 645, 711, 728, 798, 816, 890, 909, 987, 1007, 1089, 1110, 1196, 1218, 1308, 1331, 1425, 1449, 1547, 1572, 1674, 1700, 1806
OFFSET
1,1
COMMENTS
Integers of the form k + k*(k+1)/10 = k + A000217(k)/5. For k see A047208, for A000217(k)/5 see A057569. - R. J. Mathar, Sep 25 2009
Are all terms composite numbers?
Yes. They are alternately of the form (h+2)*(5*h-1)/2 and h*(5*h+11)/2, with h>0. - Bruno Berselli, Dec 22 2016
FORMULA
From R. J. Mathar, Sep 25 2009: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = 5*(2*n^2 + 10*n + 3)/16 - 3*(-1)^n*(5 + 2*n)/16.
G.f.: x*(-6 - 2*x + 2*x^2 + x^3) / ((1 + x)^2*(x - 1)^3). (End)
Sum_{n>=1} 1/a(n) = 514/363 - 2*Pi*sqrt(1+2/sqrt(5))/11. - Amiram Eldar, Jul 26 2024
MATHEMATICA
Select[k = Range[0, 130]; k (k + 11)/10, IntegerQ] (* Bruno Berselli, Dec 22 2016 *)
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Definition simplified by R. J. Mathar, Sep 25 2009
Corrected A-number in my comment - R. J. Mathar, Oct 30 2009
STATUS
approved