login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279051
Sum of odd nonprime divisors of n.
1
1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 16, 1, 1, 10, 1, 1, 22, 1, 1, 1, 26, 1, 37, 1, 1, 16, 1, 1, 34, 1, 36, 10, 1, 1, 40, 1, 1, 22, 1, 1, 70, 1, 1, 1, 50, 26, 52, 1, 1, 37, 56, 1, 58, 1, 1, 16, 1, 1, 94, 1, 66, 34, 1, 1, 70, 36, 1, 10, 1, 1, 116, 1, 78, 40, 1, 1, 118, 1, 1, 22, 86, 1, 88, 1, 1, 70, 92, 1, 94, 1, 96, 1, 1
OFFSET
1,9
FORMULA
G.f.: A(x) = B(x) - C(x), where B(x) = Sum_{k>=1} k*x^k/(1 + x^k), C(x) = Sum_{k>=2} prime(k)*x^prime(k)/(1 - x^prime(k)).
a(n) = Sum_{d|n, d odd nonprime} d.
a(A093641(n)) = 1.
EXAMPLE
a(9) = 10 because 9 has 3 divisors {1, 3, 9} among which 2 are odd nonprime {1, 9} therefore 1 + 9 = 10.
MAPLE
with(numtheory):
a:= n-> add(`if`(d::even or d::prime, 0, d), d=divisors(n)):
seq(a(n), n=1..100); # Alois P. Heinz, Jan 18 2017
MATHEMATICA
Table[DivisorSum[n, #1 &, Mod[#1, 2] == 1 && ! PrimeQ[#1] &], {n, 97}]
nmax = 97; Rest[CoefficientList[Series[Sum[k x^k/(1 + x^k), {k, 1, nmax}] - Sum[Prime[k] x^Prime[k]/(1 - x^Prime[k]), {k, 2, nmax}], {x, 0, nmax}], x]]
PROG
(PARI) a(n) = sumdiv(n, d, !isprime(d)*(d%2)*d); \\ Michel Marcus, Sep 18 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 17 2017
STATUS
approved