login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of odd nonprime divisors of n.
1

%I #20 Sep 18 2017 02:53:47

%S 1,1,1,1,1,1,1,1,10,1,1,1,1,1,16,1,1,10,1,1,22,1,1,1,26,1,37,1,1,16,1,

%T 1,34,1,36,10,1,1,40,1,1,22,1,1,70,1,1,1,50,26,52,1,1,37,56,1,58,1,1,

%U 16,1,1,94,1,66,34,1,1,70,36,1,10,1,1,116,1,78,40,1,1,118,1,1,22,86,1,88,1,1,70,92,1,94,1,96,1,1

%N Sum of odd nonprime divisors of n.

%H G. C. Greubel, <a href="/A279051/b279051.txt">Table of n, a(n) for n = 1..5000</a>

%H Ilya Gutkovskiy, <a href="/A279051/a279051.pdf">Extended graphical example</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/OddDivisorFunction.html">Odd Divisor Function</a>

%H <a href="/index/Su#sums_of_divisors">Index entries for sequences related to sums of divisors</a>

%F G.f.: A(x) = B(x) - C(x), where B(x) = Sum_{k>=1} k*x^k/(1 + x^k), C(x) = Sum_{k>=2} prime(k)*x^prime(k)/(1 - x^prime(k)).

%F a(n) = Sum_{d|n, d odd nonprime} d.

%F a(A093641(n)) = 1.

%e a(9) = 10 because 9 has 3 divisors {1, 3, 9} among which 2 are odd nonprime {1, 9} therefore 1 + 9 = 10.

%p with(numtheory):

%p a:= n-> add(`if`(d::even or d::prime, 0, d), d=divisors(n)):

%p seq(a(n), n=1..100); # _Alois P. Heinz_, Jan 18 2017

%t Table[DivisorSum[n, #1 &, Mod[#1, 2] == 1 && ! PrimeQ[#1] &], {n, 97}]

%t nmax = 97; Rest[CoefficientList[Series[Sum[k x^k/(1 + x^k), {k, 1, nmax}] - Sum[Prime[k] x^Prime[k]/(1 - x^Prime[k]), {k, 2, nmax}], {x, 0, nmax}], x]]

%o (PARI) a(n) = sumdiv(n, d, !isprime(d)*(d%2)*d); \\ _Michel Marcus_, Sep 18 2017

%Y Cf. A000593, A014076, A023890, A005069, A033272, A093641.

%K nonn

%O 1,9

%A _Ilya Gutkovskiy_, Jan 17 2017