OFFSET
1,2
COMMENTS
Equivalently, a(n) is also the largest integer m for which C(m-1,n-2) + C(m-1,n-1) > C(m-1,n) in the (m-1)st row of Pascal's triangle.
Equivalently, a(n) is the largest integer m for which m*n > (m-n)*(m-n+1). - Robert Israel, Dec 05 2016
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
Michael Penn, Putnam Exam | 2016: A2, Youtube video, 2020.
FORMULA
a(n) = (3n-1+sqrt(5n^2-2n+1))/2 - 1 if 5n^2-2n+1 is a perfect square, else a(n) = floor((3n-1+sqrt(5n^2-2n+1))/2).
a(n) = ceiling((3*n - 3 + sqrt(5*n^2-2*n+1))/2). - Robert Israel, Dec 05 2016
(3/2+sqrt(5)/2)*n - 2 < f(n) < (3/2+sqrt(5)/2)*t. - Robert Israel, Dec 22 2016
EXAMPLE
a(1) = 1, since C(m,0) = 1 > m-1 = C(m-1,1) when m = 1 and C(m,0) <= C(m-1,1) when m >= 2.
a(2) = 4, since C(m,1) = m > (m-1)(m-2)/2 = C(m-1,2) when 1 <= m <= 4 and C(m,1) < C(m-1,2) when m >= 5.
a(3) = 7, since C(m,2) = m(m-1)/2 >= (m-1)(m-2)(m-3)/6 = C(m-1,3) when 1 <= m <= 7 and C(m,2) < C(m-1,3) when m >= 8.
MAPLE
seq(ceil((3*n - 3 + sqrt(5*n^2-2*n+1))/2), n=1..100); # Robert Israel, Dec 05 2016
MATHEMATICA
Table[Ceiling[(3 n - 3 + Sqrt[5 n^2 - 2 n + 1]) / 2], {n, 60}] (* Vincenzo Librandi, Dec 05 2016 *)
PROG
(Magma) [Ceiling((3*n-3+Sqrt(5*n^2-2*n+1))/2): n in [1..70]]; // Vincenzo Librandi, Dec 05 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Timothy L. Tiffin, Dec 04 2016
STATUS
approved