The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A279055 Self-convolution of squares of factorial numbers (A001044). 1
 1, 2, 9, 80, 1240, 30240, 1071504, 51996672, 3307723776, 266872320000, 26615381760000, 3214252921651200, 462189467175321600, 78024380924038348800, 15279632043682406400000, 3435553774431004262400000, 879010223384483132866560000, 253916900613208108255150080000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) = (n!)^2 * Sum_{i=0..n} (binomial(n,i)^(-2)). Consider a triangle ABC with area p. Let points X, Y, Z be randomly and uniformly chosen on sides BC, CA, BA. Let r = area of XYZ. Then the average or expected value of (r/p)^n = a(n)/(n!^2 * (n+1)^3). a(n) = (3*(n+1)^4 *(n!)^4 /(2n+3)!) * Sum_{i=1..n+1} ((1/i)* binomial(2i, i)), see Sprugnoli Formula 5.2 as noted by Markus Scheuer. LINKS Seiichi Manyama, Table of n, a(n) for n = 0..253 Arman Maesumi, Triangle Inscribed-Triangle Picking, arXiv:1804.11007 [math.GM], 2018. R. Sprugnoli, Riordan Array Proofs of Identities in Gould's Book. FORMULA a(n) = Sum_{i=0..n} (i! * (n-i)!)^2. a(n) ~ 2*(n!)^2. - Vaclav Kotesovec, Dec 05 2016 a(n) = A001044(n)*A100516(n)/A100517(n). - Alois P. Heinz, Feb 21 2023 MATHEMATICA Table[Sum[(k!*(n-k)!)^2, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Dec 05 2016 *) CROSSREFS Cf. A000142, A001044, A003149, A100516, A100517. Sequence in context: A122720 A109519 A193208 * A320946 A135868 A212271 Adjacent sequences: A279052 A279053 A279054 * A279056 A279057 A279058 KEYWORD nonn AUTHOR Arman Maesumi, Dec 04 2016 EXTENSIONS Definition clarified by Georg Fischer, Feb 21 2023 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 25 03:15 EDT 2024. Contains 371964 sequences. (Running on oeis4.)