OFFSET
0,2
COMMENTS
a(n) = (n!)^2 * Sum_{i=0..n} (binomial(n,i)^(-2)).
Consider a triangle ABC with area p. Let points X, Y, Z be randomly and uniformly chosen on sides BC, CA, BA. Let r = area of XYZ. Then the average or expected value of (r/p)^n = a(n)/(n!^2 * (n+1)^3).
a(n) = (3*(n+1)^4 *(n!)^4 /(2n+3)!) * Sum_{i=1..n+1} ((1/i)* binomial(2i, i)), see Sprugnoli Formula 5.2 as noted by Markus Scheuer.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..253
Arman Maesumi, Triangle Inscribed-Triangle Picking, arXiv:1804.11007 [math.GM], 2018.
R. Sprugnoli, Riordan Array Proofs of Identities in Gould's Book.
FORMULA
a(n) = Sum_{i=0..n} (i! * (n-i)!)^2.
a(n) ~ 2*(n!)^2. - Vaclav Kotesovec, Dec 05 2016
MATHEMATICA
Table[Sum[(k!*(n-k)!)^2, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Dec 05 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Arman Maesumi, Dec 04 2016
EXTENSIONS
Definition clarified by Georg Fischer, Feb 21 2023
STATUS
approved