login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279034
The sum of the necessary diagonal movements from each square unit of an n X n+1 rectangle to reach any of the corners of the rectangle.
1
0, 2, 16, 32, 76, 114, 204, 276, 428, 542, 772, 940, 1264, 1494, 1928, 2232, 2792, 3178, 3880, 4360, 5220, 5802, 6836, 7532, 8756, 9574, 11004, 11956, 13608, 14702, 16592, 17840, 19984, 21394, 23808, 25392, 28092, 29858, 32860, 34820, 38140, 40302, 43956
OFFSET
1,2
COMMENTS
All terms in the sequence are even, because the rectangles are symmetric. A single move consists of a movement by one row and one column.
LINKS
FORMULA
Empirical g.f.: 2*x^2*(1 + 7*x + 6*x^2 + 8*x^3 + 3*x^4 + x^5) / ((1 - x)^4*(1 + x)^3*(1 + x^2)). - Colin Barker, Dec 04 2016
Empirical: a(n) = (13/24)*(n^3) + ((3*(n mod 2) + 1)/8)*(n^2) - ((28 - 9*(n mod 2))/24)*(n) - (n mod 4)/4.
EXAMPLE
a(3) = (13/24)(3^3) + ((3*(3 mod 2)+1)/8)*(3^2) - ((28-9*(3 mod 2))/24)*(3) - (3 mod 4)/4 = (13/24)(3^3) + (1/2)(3^2) - (19/24)(3) - (3/4) = 16.
Illustration of a(3):
.
. 3 columns
. +---+---+---+
. 4 | 0 | 3 | 0 | 0 + 3 + 0 = 3
. +---+---+---+
. r | 2 | 1 | 2 | 2 + 1 + 2 = 5
. o +---+---+---+
. w | 2 | 1 | 2 | 2 + 1 + 2 = 5
. s +---+---+---+
. | 0 | 3 | 0 | 0 + 3 + 0 = 3
. +---+---+---+
.
Adding the sums for the rows, a(3) = 3 + 5 + 5 + 3 = 16.
MATHEMATICA
CoefficientList[ Series[( 2(x + 7x^2 + 6x^3 + 8x^4 + 3x^5 + x^6))/((x -1)^4 (x + 1)^3 (x^2 +1)), {x, 0, 45}], x] (* or *)
LinearRecurrence[{1, 2, -2, 0, 0, -2, 2, 1, -1}, {0, 2, 16, 32, 76, 114, 204, 276, 428}, 45] (* Robert G. Wilson v, Dec 13 2016 *)
PROG
(Java) See Friedman link
CROSSREFS
Sequence in context: A056707 A069256 A344016 * A120069 A018975 A012696
KEYWORD
nonn
AUTHOR
Isaac S. Friedman, Dec 03 2016
STATUS
approved