OFFSET
1,2
COMMENTS
After carries, this is the decimal expansion of Sum_{i>=0} 0.2^i = 1.25. For n > 2, the 10^0's digit of a(n) + the 10^1's digit of a(n+1) + ... + the 10^m's digit of a(n+m) = 9 for some finite m.
Conjecture: a(n) ~ c*n where c ~= 1.93.
Conjecture: lim_{n->infinity} a(n)/n = (9/2)*log_5(2) =
1.93804... - Jon E. Schoenfield, Dec 09 2016
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..10000
EXAMPLE
1
.2
. 4
. .8
. .16
. . 32
. . .64
. . .128
. . . 256
. . . .512
. . . .1024
The sum of digits of the first column is 1. Therefore, a(1) = 1.
The sum of digits in column 4 is 8 + 1 = 9. Therefore, a(4) = 9.
With the powers of 2 listed above, we can find n up to n = 7. For n > 8, some digits from 2^m compose a(n) for m > 10.
MATHEMATICA
f[n_, b_] := Block[{k = n}, While[k < n + Floor[ k*Log10[b]], k++]; Plus @@ Mod[ Quotient[ Table[ b^j*10^(k - j), {j, n -1, k}], 10^(k - n +1)], 10]]; Table[f[n, 2], {n, 65}]
(* Robert G. Wilson v, Dec 03 2016 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
David A. Corneth, Dec 03 2016
STATUS
approved