login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279035
Left-concatenate zeros to 2^(n-1) such that it has n digits. In the regular array formed by listing the found powers, a(n) is the sum of (nonzero) digits in column n.
1
1, 2, 4, 9, 9, 9, 8, 19, 9, 8, 17, 27, 27, 27, 28, 17, 26, 35, 45, 45, 46, 37, 25, 44, 53, 65, 42, 72, 74, 52, 70, 90, 92, 74, 53, 62, 72, 70, 93, 61, 81, 80, 89, 100, 91, 80, 91, 79, 99, 99, 99, 98, 107, 117, 118, 106, 130, 86, 123, 155, 137, 117, 118, 105, 136
OFFSET
1,2
COMMENTS
After carries, this is the decimal expansion of Sum_{i>=0} 0.2^i = 1.25. For n > 2, the 10^0's digit of a(n) + the 10^1's digit of a(n+1) + ... + the 10^m's digit of a(n+m) = 9 for some finite m.
Conjecture: a(n) ~ c*n where c ~= 1.93.
Conjecture: lim_{n->infinity} a(n)/n = (9/2)*log_5(2) =
1.93804... - Jon E. Schoenfield, Dec 09 2016
LINKS
EXAMPLE
1
.2
. 4
. .8
. .16
. . 32
. . .64
. . .128
. . . 256
. . . .512
. . . .1024
The sum of digits of the first column is 1. Therefore, a(1) = 1.
The sum of digits in column 4 is 8 + 1 = 9. Therefore, a(4) = 9.
With the powers of 2 listed above, we can find n up to n = 7. For n > 8, some digits from 2^m compose a(n) for m > 10.
MATHEMATICA
f[n_, b_] := Block[{k = n}, While[k < n + Floor[ k*Log10[b]], k++]; Plus @@ Mod[ Quotient[ Table[ b^j*10^(k - j), {j, n -1, k}], 10^(k - n +1)], 10]]; Table[f[n, 2], {n, 65}]
(* Robert G. Wilson v, Dec 03 2016 *)
CROSSREFS
Sequence in context: A198679 A244285 A111422 * A076661 A258710 A246515
KEYWORD
nonn,base
AUTHOR
David A. Corneth, Dec 03 2016
STATUS
approved