OFFSET
1,6
EXAMPLE
a(8) counts these 10 partitions: [4,3,1], [4,2,2], [4,2,1,1], [4,1,1,1,1], [3,2,2,1], [3,2,1,1,1], [3,1,1,1,1,1], [2,2,2,1,1], [2,2,1,1,1,1],[2,1,1,1,1,1,1]; e.g., [3,1] is a proper partition of 4.
MATHEMATICA
Table[parts = IntegerPartitions[z]; parts = Drop[parts,
Position[Map[#[[1]] &, parts], Floor[z/2], 1, 1][[1]][[1]] - 1];
Count[Table[{first, rest} = {First[#], Rest[#]} &[parts[[nn]]];
Apply[Or, Map[MatchQ[rest, #] &, Map[Flatten[{___, #, ___}] &,
Rest[IntegerPartitions[first]]]]], {nn, Length[parts]}], True], {z, 30}]
(* Peter J. C. Moses, Dec 02 2016 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Dec 04 2016
STATUS
approved