login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279036
Number of partitions p of n that contain a proper partition of the maximal part of p.
0
0, 0, 0, 1, 1, 4, 4, 10, 12, 21, 25, 46, 50, 82, 99, 148, 175, 259, 303, 435, 513, 708, 845, 1146, 1347, 1802, 2138, 2793, 3318, 4273, 5050, 6471, 7621, 9641, 11406, 14210, 16758, 20833, 24475, 30143
OFFSET
1,6
EXAMPLE
a(8) counts these 10 partitions: [4,3,1], [4,2,2], [4,2,1,1], [4,1,1,1,1], [3,2,2,1], [3,2,1,1,1], [3,1,1,1,1,1], [2,2,2,1,1], [2,2,1,1,1,1],[2,1,1,1,1,1,1]; e.g., [3,1] is a proper partition of 4.
MATHEMATICA
Table[parts = IntegerPartitions[z]; parts = Drop[parts,
Position[Map[#[[1]] &, parts], Floor[z/2], 1, 1][[1]][[1]] - 1];
Count[Table[{first, rest} = {First[#], Rest[#]} &[parts[[nn]]];
Apply[Or, Map[MatchQ[rest, #] &, Map[Flatten[{___, #, ___}] &,
Rest[IntegerPartitions[first]]]]], {nn, Length[parts]}], True], {z, 30}]
(* Peter J. C. Moses, Dec 02 2016 *)
CROSSREFS
Cf. A000041.
Sequence in context: A219471 A006477 A233739 * A182699 A058596 A180964
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Dec 04 2016
STATUS
approved