Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #47 Dec 21 2016 12:47:53
%S 0,2,16,32,76,114,204,276,428,542,772,940,1264,1494,1928,2232,2792,
%T 3178,3880,4360,5220,5802,6836,7532,8756,9574,11004,11956,13608,14702,
%U 16592,17840,19984,21394,23808,25392,28092,29858,32860,34820,38140,40302,43956
%N The sum of the necessary diagonal movements from each square unit of an n X n+1 rectangle to reach any of the corners of the rectangle.
%C All terms in the sequence are even, because the rectangles are symmetric. A single move consists of a movement by one row and one column.
%H Isaac S. Friedman, <a href="/A279034/b279034.txt">Table of n, a(n) for n = 1..998</a>
%H Isaac S. Friedman, <a href="/A279034/a279034.txt">Java program to find a single term</a>
%F Empirical g.f.: 2*x^2*(1 + 7*x + 6*x^2 + 8*x^3 + 3*x^4 + x^5) / ((1 - x)^4*(1 + x)^3*(1 + x^2)). - _Colin Barker_, Dec 04 2016
%F Empirical: a(n) = (13/24)*(n^3) + ((3*(n mod 2) + 1)/8)*(n^2) - ((28 - 9*(n mod 2))/24)*(n) - (n mod 4)/4.
%e a(3) = (13/24)(3^3) + ((3*(3 mod 2)+1)/8)*(3^2) - ((28-9*(3 mod 2))/24)*(3) - (3 mod 4)/4 = (13/24)(3^3) + (1/2)(3^2) - (19/24)(3) - (3/4) = 16.
%e Illustration of a(3):
%e .
%e . 3 columns
%e . +---+---+---+
%e . 4 | 0 | 3 | 0 | 0 + 3 + 0 = 3
%e . +---+---+---+
%e . r | 2 | 1 | 2 | 2 + 1 + 2 = 5
%e . o +---+---+---+
%e . w | 2 | 1 | 2 | 2 + 1 + 2 = 5
%e . s +---+---+---+
%e . | 0 | 3 | 0 | 0 + 3 + 0 = 3
%e . +---+---+---+
%e .
%e Adding the sums for the rows, a(3) = 3 + 5 + 5 + 3 = 16.
%t CoefficientList[ Series[( 2(x + 7x^2 + 6x^3 + 8x^4 + 3x^5 + x^6))/((x -1)^4 (x + 1)^3 (x^2 +1)), {x, 0, 45}], x] (* or *)
%t LinearRecurrence[{1, 2, -2, 0, 0, -2, 2, 1, -1}, {0, 2, 16, 32, 76, 114, 204, 276, 428}, 45] (* _Robert G. Wilson v_, Dec 13 2016 *)
%o (Java) See Friedman link
%K nonn
%O 1,2
%A _Isaac S. Friedman_, Dec 03 2016