OFFSET
0,2
LINKS
Indranil Ghosh, Table of n, a(n) for n = 0..100
FORMULA
G.f.: (2*x)/(((-(1-sqrt(1-4*x))/(1+sqrt(1-4*x))-((1-sqrt(1-4*x))/(1+sqrt(1-4*x)))^2)+1)*(1-sqrt(1-4*x))*sqrt(1-4*x)).
Conjecture: +n*(3*n-62)*a(n) +(3*n^2+362*n-247)*a(n-1) +(-171*n^2+220*n+162)*a(n-2) +(417*n^2-2570*n+3551)*a(n-3) +2*(27*n-59)*(2*n-7)*a(n-4)=0. - R. J. Mathar, Mar 12 2017
Conjecture: +n*(n^2-11*n+22)*a(n) +2*(-4*n^3+45*n^2-113*n+60)*a(n-1) +(15*n^3-173*n^2+530*n-480)*a(n-2) +2*(2*n-5)*(n^2-9*n+12)*a(n-3)=0. - R. J. Mathar, Mar 12 2017
a(n) ~ phi^(3*n) / sqrt(5), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Jul 10 2021
PROG
(Maxima)
taylor((2*x)/(((-(1-sqrt(1-4*x))/(1+sqrt(1-4*x))-((1-sqrt(1-4*x))/(1+sqrt(1-4*x)))^2)+1)*(1-sqrt(1-4*x))*sqrt(1-4*x)), x, 0, 27)
(Python)
from sympy import binomial, fibonacci
def a(n): return sum([fibonacci(k + 1)*binomial(2*n - 1, n - k) for k in range(n + 1)])
print([a(n) for n in range(24)]) # Indranil Ghosh, Jun 30 2017
(PARI) a(n) = sum(k=0, n, fibonacci(k+1)*binomial(2*n-1, n-k)); \\ Michel Marcus, Jun 30 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Dec 03 2016
STATUS
approved