login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279014
a(n) = Sum_{k=0..n} fibonacci(k+1)*binomial(2*n-1,n-k).
1
1, 2, 8, 33, 138, 581, 2455, 10395, 44068, 186953, 793453, 3368279, 14300161, 60713627, 257763847, 1094294875, 4645306802, 19717723173, 83687094899, 355155267179, 1507078468075, 6394577650959, 27129846069301, 115091608301743
OFFSET
0,2
LINKS
FORMULA
G.f.: (2*x)/(((-(1-sqrt(1-4*x))/(1+sqrt(1-4*x))-((1-sqrt(1-4*x))/(1+sqrt(1-4*x)))^2)+1)*(1-sqrt(1-4*x))*sqrt(1-4*x)).
Conjecture: +n*(3*n-62)*a(n) +(3*n^2+362*n-247)*a(n-1) +(-171*n^2+220*n+162)*a(n-2) +(417*n^2-2570*n+3551)*a(n-3) +2*(27*n-59)*(2*n-7)*a(n-4)=0. - R. J. Mathar, Mar 12 2017
Conjecture: +n*(n^2-11*n+22)*a(n) +2*(-4*n^3+45*n^2-113*n+60)*a(n-1) +(15*n^3-173*n^2+530*n-480)*a(n-2) +2*(2*n-5)*(n^2-9*n+12)*a(n-3)=0. - R. J. Mathar, Mar 12 2017
a(n) ~ phi^(3*n) / sqrt(5), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Jul 10 2021
PROG
(Maxima)
taylor((2*x)/(((-(1-sqrt(1-4*x))/(1+sqrt(1-4*x))-((1-sqrt(1-4*x))/(1+sqrt(1-4*x)))^2)+1)*(1-sqrt(1-4*x))*sqrt(1-4*x)), x, 0, 27)
(Python)
from sympy import binomial, fibonacci
def a(n): return sum([fibonacci(k + 1)*binomial(2*n - 1, n - k) for k in range(n + 1)])
print([a(n) for n in range(24)]) # Indranil Ghosh, Jun 30 2017
(PARI) a(n) = sum(k=0, n, fibonacci(k+1)*binomial(2*n-1, n-k)); \\ Michel Marcus, Jun 30 2017
CROSSREFS
Cf. A000045.
Sequence in context: A037513 A037716 A373752 * A099015 A150865 A150866
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Dec 03 2016
STATUS
approved