login
A373752
a(n) = Sum_{k=0..n-2} A205497(n, k) * (1 - k mod 2) if n >= 2, a(0) = a(1) = 1.
1
1, 1, 1, 1, 2, 8, 33, 136, 670, 3968, 25593, 176896, 1344154, 11184128, 99897361, 951878656, 9687175862, 104932671488, 1202872541673, 14544442556416, 185158504589938, 2475749026562048, 34676498435503489, 507711943253426176, 7757079744889072462, 123460740095103991808
OFFSET
0,5
COMMENTS
Number of linear extensions in L(eps Z_n) that have an even number of descents. (See Petersen and Yan Zhuang, p. 6.)
LINKS
T. Kyle Petersen and Yan Zhuang, Zig-zag Eulerian polynomials, arXiv:2403.07181 [math.CO], 2024.
FORMULA
MAPLE
enum := L -> ListTools:-Enumerate(L):
seq(add(c[2]*irem(c[1], 2), c = enum([A205497row(n)])), n = 0..25);
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Jun 16 2024
STATUS
approved