login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099015
a(n) = Fib(n+1)*(2*Fib(n)^2 + Fib(n)*Fib(n-1) + Fib(n-1)^2).
2
1, 2, 8, 33, 140, 592, 2509, 10626, 45016, 190685, 807764, 3421728, 14494697, 61400482, 260096680, 1101787113, 4667245276, 19770767984, 83750317589, 354772037730, 1502838469496, 6366125914117, 26967342128548
OFFSET
0,2
COMMENTS
Form the matrix A=[1,1,1,1;3,2,1,0;3,1,0,0;1,0,0,0]=(binomial(3-j,i)). Then a(n)=(2,2)-element of A^n.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..172 from Vincenzo Librandi)
FORMULA
G.f.: (1-x-4*x^2)/((1+x-x^2)*(1-4*x-x^2)).
G.f.: (1-x-4*x^2)/(1-3*x-6*x^2+3*x^3+x^4).
a(n) = (3*Fib(3*n+1) + (-1)^n*Fib(n-3))/5.
a(n) = (2+sqrt(5))^n*(3/10 + 3*sqrt(5)/50) + (2-sqrt(5))^n*(3/10 - 3*sqrt(5)/50) + (-1)^n*((1/2 - sqrt(5)/2)^n*(1/5 + 2*sqrt(5)/25) + (1/5 - 2*sqrt(5)/25)*(1/2 + sqrt(5)/2)^n).
MATHEMATICA
LinearRecurrence[{3, 6, -3, -1}, {1, 2, 8, 33}, 30] (* Harvey P. Dale, Nov 28 2015 *)
CoefficientList[Series[(1-x-4*x^2)/((1+x-x^2)*(1-4*x-x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 31 2017 *)
PROG
(Magma) [Fibonacci(n+1)*(2*Fibonacci(n)^2 + Fibonacci(n)*Fibonacci(n-1) + Fibonacci(n-1)^2): n in [0..30]]; // Vincenzo Librandi, Jun 05 2011
(PARI) a(n)=my(e=fibonacci(n-1), f=fibonacci(n)); (e+f)*(2*f^2+f*e+e^2) \\ Charles R Greathouse IV, Jun 05, 2011
(PARI) first(n) = Vec((1 - x - 4*x^2)/(1 - 3*x - 6*x^2 + 3*x^3 + x^4) + O(x^n)) \\ Iain Fox, Dec 31 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 22 2004
STATUS
approved