login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277860
a(n) = Sum_{k=0..n-1} binomial(4k, 2k+1)*binomial(2k, k)*48^(n-1-k).
2
0, 8, 720, 50400, 3220000, 196885920, 11756961216, 692835631488, 40536961717824, 2363784447147552, 137716866109432896, 8030173585594013568, 469162781054378536320, 27486632292027996114560, 1615617140290621588826880, 95302760085090826490672640
OFFSET
1,2
COMMENTS
Conjecture: For any prime p > 3 and positive integer n, we have
(Sum_{k=0..p*n-1} binomial(4k, 2k+1)*binomial(2k, k)/48^k - (p/3)*Sum_{r=0..n-1} binomial(4r, 2r+1)*binomial(2r, r)/48^r)*48^n/((p*n)^2*binomial(4n, 2n)*binomial(2n, n)) == (5/3)*B_{p-2}(1/3) (mod p), where (p/3) is the Legendre symbol and B_{p-2}(x) is the Bernoulli polynomial of degree p-2.
This conjecture with n = 1 gives the congruence a(p) == (5/12)*p^2*B_{p-2}(1/3) (mod p^3) for any prime p > 3.
LINKS
Zhi-Wei Sun, Super congruences and Euler numbers, Sci. China Math. 54(2011), no.12, 2509--2535.
Zhi-Wei Sun, New series for some special values of L-functions, Nanjing Univ. J. Math. Biquarterly 32(2015), no.2, 189-218.
Zhi-Wei Sun, Supercongruences involving Lucas sequences, arXiv:1610.03384 [math.NT], 2016.
FORMULA
a(n) ~ 2^(6*n - 9/2) / (Pi*n). - Vaclav Kotesovec, Nov 06 2021
EXAMPLE
a(1) = 0 since binomial(4*0, 2*0+1)*binomial(2*0, 0)*48^(1-1-0) = 0.
a(2) = 8 since Sum_{k=0..1} binomial(4k, 2k+1)*binomial(2k, k)*48^(2-1-k) = binomial(4, 2+1)*binomial(2, 1)*48^0 = 8.
MATHEMATICA
a[n_]:=Sum[Binomial[4k, 2k+1]Binomial[2k, k]48^(n-1-k), {k, 0, n-1}]
Table[a[n], {n, 1, 16}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Nov 02 2016
STATUS
approved