login
A277857
Numbers that are the sum of 2 squares with a unique partition and also the sum of 3 nonnegative cubes with a unique partition.
0
1, 2, 8, 9, 10, 16, 17, 29, 36, 64, 72, 73, 80, 81, 128, 136, 153, 160, 197, 218, 232, 244, 277, 281, 288, 314, 349, 397, 405, 433, 466, 468, 512, 514, 521, 557, 576, 577, 584, 586, 593, 637, 640, 648, 701, 738, 757, 794, 801, 853, 857, 881, 882, 953, 980, 1024, 1028, 1088, 1152, 1217, 1224, 1249, 1268, 1280, 1332, 1341, 1396
OFFSET
1,2
COMMENTS
Primes in this sequence are 2, 17, 29, 73, 197, 277, 281, 349, 397, 433, 521, 557, 577, 593, 701, 757, 853, 857, 881, 953, ... (subsequence of A002313).
EXAMPLE
a(1) = 1 because 1 = 0^2 + 1^2 and 1 = 0^3 + 0^3 + 1^3;
a(2) = 2 because 2 = 1^2 + 1^2 and 2 = 0^3 + 1^3 + 1^3;
a(3) = 8 because 8 = 2^2 + 2^2 and 8 = 0^3 + 0^3 + 2^3;
a(4) = 9 because 9 = 0^2 + 3^2 and 9 = 0^3 + 1^3 + 2^3;
a(5) = 10 because 10 = 1^2 + 3^2 and 10 = 1^3 + 1^3 + 2^3, etc.
MATHEMATICA
Select[Range[1400], Length[PowersRepresentations[#1, 2, 2]] == 1 && Length[PowersRepresentations[#1, 3, 3]] == 1 & ]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 02 2016
STATUS
approved