login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277862
Number of connected, unlabeled, unrooted distance-hereditary graphs on n vertices.
5
1, 1, 2, 6, 18, 73, 308, 1484, 7492, 40010, 220676, 1253940, 7282316, 43096792, 259019070, 1577653196, 9720170360, 60492629435, 379820431422, 2403679290621, 15319255038074, 98255642978084, 633833391637128, 4110221883283079, 26781322507739916, 175268504233782739
OFFSET
1,3
COMMENTS
a(n) is the number of unlabeled and unrooted distance-hereditary graphs on n vertices; the enumeration is obtained from the symbolic specification / generating functions through Maple's combstruct library--an arbitrary number of terms can be derived.
LINKS
H.-J. Bandelt and H. M. Mulder, Distance-hereditary graphs, Journal of Combinatorial Theory, Series B, 41 (2): 182-208, doi:10.1016/0095-8956(86)90043-2, MR 0859310 (1986).
C. Chauve, É. Fusy and J. Lumbroso, An Exact Enumeration of Distance-Hereditary Graphs, arXiv:1608.01464 [math.CO], Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium On Discrete Algorithms, ANALCO session. SIAM (2017).
E. Howorka, A characterization of distance-hereditary graphs, The Quarterly Journal of Mathematics. Oxford. Second Series, 28 (112): 417-420, doi:10.1093/qmath/28.4.417, MR 0485544 (1977).
CROSSREFS
Cf. A280766.
Sequence in context: A194088 A022491 A004395 * A213427 A006388 A007116
KEYWORD
nonn,easy
AUTHOR
Jérémie Lumbroso, Nov 02 2016
EXTENSIONS
Offset corrected by Falk Hüffner, Jun 27 2018
STATUS
approved