login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A277833 Number of '3' digits in the set of all numbers from 0 to A014824(n) = Sum_{i=1..n} i*10^(n-i) = (0, 1, 12, 123, 1234, 12345, ...). 3
0, 0, 1, 23, 349, 4721, 59553, 718985, 8424417, 96589849, 1089355281, 12128120713, 133626886145, 1459725651582, 15831824417065, 170663923183008, 1830096021953551, 19535528120770094, 207700960220046637, 2200466392323923180, 23239231824473799723 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

David A. Corneth, Table of n, a(n) for n = 0..998

FORMULA

a(n) = A277832(n) - 4*10^(n-3) [for n >= 3] = A277834(n) + 5*10^(n-4) [for n >= 4].

More generally, for m = 0, ..., 9, let a[m] denote A277830, ..., A277838 and A277849, respectively. Then a[0](n) = a[n](n) = a[m](n) + 1 for all m > n >= 0, and a[m-1](n) = a[m](n) + (m+1)*10^(n-m) for all n >= m > 1.

EXAMPLE

For n=2 there is only one digit '3' in the sequence 0, 1, 2, *3*, 4, ..., 12.

For n=3 there are 12 + 10 = 22 more digits '3' in { 13, 23, 30, ..., 39, 43, 53, ..., 123 }, where 33 accounts for two '3's.

PROG

(PARI) print1(c=N=0); for(n=1, 8, print1(", "c+=sum(k=N+1, N=N*10+n, #select(d->d==3, digits(k)))))

(PARI) A277833(n, m=3)=if(n>12, error("not yet implemented"), n>m, A277833(n, m+1)+(m+2)*10^(n-m-1), (9*n-11)*(10^n+1)\729+2-(m>n)) \\ M. F. Hasler, Nov 02 2016, edited Dec 29 2020

CROSSREFS

Cf. A277830 - A277838, A277849, A277635, A272525, A083449, A014824.

Sequence in context: A023950 A268465 A025973 * A022469 A028030 A022454

Adjacent sequences:  A277830 A277831 A277832 * A277834 A277835 A277836

KEYWORD

nonn,base

AUTHOR

M. F. Hasler, Nov 01 2016

EXTENSIONS

More terms from Lars Blomberg, Nov 05 2016

Removed incorrect b-file. - David A. Corneth, Dec 31 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 2 23:51 EDT 2022. Contains 357230 sequences. (Running on oeis4.)