login
A083449
a(n) = A019566(n)/9, where A019566(n) = concat(n,...,1) - concat(1,...,n).
16
0, 1, 22, 343, 4664, 58985, 713306, 8367627, 96021948, -150891621, -13731137410, -260644605199, 86159119727012, 19839246664059223, 3106259112208391434, 422859356777752723645, 53509280234443297055856, 6473262479112108841388067, 759559693477989774385720278
OFFSET
1,3
COMMENTS
Are there any palindromes > 58985?
This sequence also gives the number of occurrences of any digit d > n (thus n < 9) in the list of all numbers from 1 to concatenation(1,...,n) = A007908(n) = A014824(n) = sum_{i=1..n} i*10^(n-i). See A277849, A061217, A277830 etc. - M. F. Hasler, Nov 01 2016, edited Nov 07 2020
FORMULA
For n < 10, a(n) = ceiling((9*n-11)*(10^n+1)/729). - M. F. Hasler, Nov 07 2020
MAPLE
a:= n-> (parse(cat((n+1-i)$i=1..n))-parse(cat($1..n)))/9:
seq(a(n), n=1..20); # Alois P. Heinz, Nov 09 2020
MATHEMATICA
Array[(FromDigits@ Apply[Join, Reverse@ #] - FromDigits@ Apply[Join, #])/9 &@ Map[IntegerDigits, Range[#]] &, 19] (* Michael De Vlieger, Nov 12 2020 *)
PROG
(PARI) apply( {A083449(n)=A019566(n)\9}, [1..20]) \\ - M. F. Hasler, Nov 07 2020
CROSSREFS
Cf. A061217.
Sequence in context: A019490 A021254 A231647 * A272525 A277849 A277838
KEYWORD
base,easy,sign
AUTHOR
Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 01 2003
EXTENSIONS
More terms from David Wasserman, Nov 09 2004
STATUS
approved