login
a(n) = A019566(n)/9, where A019566(n) = concat(n,...,1) - concat(1,...,n).
16

%I #24 Nov 22 2020 21:15:42

%S 0,1,22,343,4664,58985,713306,8367627,96021948,-150891621,

%T -13731137410,-260644605199,86159119727012,19839246664059223,

%U 3106259112208391434,422859356777752723645,53509280234443297055856,6473262479112108841388067,759559693477989774385720278

%N a(n) = A019566(n)/9, where A019566(n) = concat(n,...,1) - concat(1,...,n).

%C Are there any palindromes > 58985?

%C This sequence also gives the number of occurrences of any digit d > n (thus n < 9) in the list of all numbers from 1 to concatenation(1,...,n) = A007908(n) = A014824(n) = sum_{i=1..n} i*10^(n-i). See A277849, A061217, A277830 etc. - _M. F. Hasler_, Nov 01 2016, edited Nov 07 2020

%F For n < 10, a(n) = ceiling((9*n-11)*(10^n+1)/729). - _M. F. Hasler_, Nov 07 2020

%p a:= n-> (parse(cat((n+1-i)$i=1..n))-parse(cat($1..n)))/9:

%p seq(a(n), n=1..20); # _Alois P. Heinz_, Nov 09 2020

%t Array[(FromDigits@ Apply[Join, Reverse@ #] - FromDigits@ Apply[Join, #])/9 &@ Map[IntegerDigits, Range[#]] &, 19] (* _Michael De Vlieger_, Nov 12 2020 *)

%o (PARI) apply( {A083449(n)=A019566(n)\9}, [1..20]) \\ - _M. F. Hasler_, Nov 07 2020

%Y Cf. A061217.

%K base,easy,sign

%O 1,3

%A _Amarnath Murthy_ and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 01 2003

%E More terms from _David Wasserman_, Nov 09 2004