Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Nov 22 2020 21:15:42
%S 0,1,22,343,4664,58985,713306,8367627,96021948,-150891621,
%T -13731137410,-260644605199,86159119727012,19839246664059223,
%U 3106259112208391434,422859356777752723645,53509280234443297055856,6473262479112108841388067,759559693477989774385720278
%N a(n) = A019566(n)/9, where A019566(n) = concat(n,...,1) - concat(1,...,n).
%C Are there any palindromes > 58985?
%C This sequence also gives the number of occurrences of any digit d > n (thus n < 9) in the list of all numbers from 1 to concatenation(1,...,n) = A007908(n) = A014824(n) = sum_{i=1..n} i*10^(n-i). See A277849, A061217, A277830 etc. - _M. F. Hasler_, Nov 01 2016, edited Nov 07 2020
%F For n < 10, a(n) = ceiling((9*n-11)*(10^n+1)/729). - _M. F. Hasler_, Nov 07 2020
%p a:= n-> (parse(cat((n+1-i)$i=1..n))-parse(cat($1..n)))/9:
%p seq(a(n), n=1..20); # _Alois P. Heinz_, Nov 09 2020
%t Array[(FromDigits@ Apply[Join, Reverse@ #] - FromDigits@ Apply[Join, #])/9 &@ Map[IntegerDigits, Range[#]] &, 19] (* _Michael De Vlieger_, Nov 12 2020 *)
%o (PARI) apply( {A083449(n)=A019566(n)\9}, [1..20]) \\ - _M. F. Hasler_, Nov 07 2020
%Y Cf. A061217.
%K base,easy,sign
%O 1,3
%A _Amarnath Murthy_ and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 01 2003
%E More terms from _David Wasserman_, Nov 09 2004