login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277849
Number of digits '9' in the set of all numbers from 0 to A014824(n) = sum_{i=1..n} i*10^(n-i) = (0, 1, 12, 123, 1234, 12345, ...).
12
0, 0, 1, 22, 343, 4664, 58985, 713306, 8367627, 96021949, 1083676281, 12071330713, 133058986145, 1454046651577, 15775034417009, 170096023182441, 1824417021947873, 19478738120713305, 207133060219478737, 2194787392318244180, 23182441824417009723
OFFSET
0,4
LINKS
FORMULA
a(n) = A083449(n) = A277830(n) - 1 for 0 < n < 9.
a(n) = A277838(n) for n < 8, and a(8) = A277838(8) - 1.
More generally, for m = 0, ..., 9, let a[m] denote A277830, ..., A277838 and A277849, respectively. Then a[0](n) = a[n](n) = a[m](n) + 1 for all m > n >= 0, and a[m-1](n) = a[m](n) + (m+1)*10^(n-m) for all n >= m > 1.
EXAMPLE
For n = 2 there is only one digit '9' in the sequence 0, 1, 2, ..., 12.
For n = 3 there are 11 + 10 = 21 more digits '9' in { 19, 29, ..., 89, 90, ..., 99, 109, 119 }, where 99 accounts for two '9's.
PROG
(PARI) print1(c=N=0); for(n=1, 8, print1(", "c+=sum(k=N+1, N=N*10+n, #select(d->d==9, digits(k)))))
(PARI) A014824(n)=(10^n-1)*(10/81)-n/9;
A102684(n)=my(pow, f, g, h); sum(j=1, #Str(n), pow=10^j; f=floor(n/pow); g=floor(n/pow+1/10); h=(4/5+g)*pow; g*(2*n+2-h)-f*(2*n+2-(1+f)*pow))/2;
vector(50, n, A277849(n-1)) \\ Lars Blomberg, Nov 11 2020
CROSSREFS
KEYWORD
nonn,base
AUTHOR
M. F. Hasler, Nov 01 2016
EXTENSIONS
More terms from Lars Blomberg, Nov 05 2016
Replaced incorrect b-file by Lars Blomberg, Nov 11 2020
STATUS
approved