login
A276133
Exponent of highest power of 2 dividing the product of the composite numbers between the n-th prime and the (n+1)-st prime.
3
0, 2, 1, 4, 2, 5, 1, 3, 6, 1, 8, 4, 1, 3, 7, 5, 2, 8, 3, 3, 4, 5, 6, 9, 3, 1, 4, 2, 5, 11, 8, 6, 1, 10, 1, 6, 7, 3, 6, 6, 2, 8, 6, 3, 1, 12, 10, 6, 2, 4, 4, 4, 8, 11, 4, 6, 1, 7, 4, 1, 11, 13, 3, 3, 3, 15, 7, 8, 2, 6, 4, 7, 7, 5, 3, 10, 7, 5, 7
OFFSET
1,2
LINKS
FORMULA
a(n) = A007814(A061214(n)).
a(n+1) = Sum_{k = A000040(n+1)..A000040(n+2)} A007814(k).
MAPLE
A:= Vector(100): q:= 2:
for n from 1 to 100 do
p:= q; q:= nextprime(q);
t:= 0;
for i from p+1 to q-1 do t:= t + padic:-ordp(i, 2) od;
A[n]:= t
od:
convert(A, list); # Robert Israel, Apr 11 2021
MATHEMATICA
IntegerExponent[#, 2]&/@(Times@@Range[#[[1]]+1, #[[2]]-1]&/@Partition[ Prime[ Range[ 80]], 2, 1]) (* Harvey P. Dale, Aug 12 2024 *)
PROG
(PARI) a(n) = valuation(prod(k=prime(n)+1, prime(n+1)-1, k), 2); \\ Michel Marcus, Aug 31 2016
(PARI) a(n) = my(p=prime(n+1), q=prime(n)); p-hammingweight(p) - (q-hammingweight(q)); \\ Kevin Ryde, Apr 11 2021
(Python)
from sympy import prime
def A276133(n): return (p:=prime(n+1)-1)-p.bit_count()-(q:=prime(n))+q.bit_count() # Chai Wah Wu, Jul 10 2022
CROSSREFS
Supersequence of A205649 (Hamming distance between twin primes).
First differences of A080085.
Sequence in context: A120988 A095979 A377781 * A307602 A054269 A373399
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
a(16) corrected by Robert Israel, Apr 11 2021
STATUS
approved