login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276135
Ben Ames Williams's Monkey and Coconuts Problem.
2
0, 0, 1, 20, 51, 2604, 6665, 720600, 1864135, 348678440, 909090909, 261535698060, 685853880635, 281241170407092, 740800455037201, 410525522232055664, 1085102592571150095, 781282469559318055056, 2070863582910344082917, 1879498672877297909667780, 4993219047619047619047619, 5577014881186619679500164220
OFFSET
1,4
COMMENTS
In Ben Ames Williams's coconuts problem, a pile of coconuts remains the next day that is divisible by n sailors. Integers in the sequence multiplied by (n^2)-n determine the size of the divisible pile.
LINKS
M. B. Richardson, A Needlessly Complicated and Unhelpful Solution to Ben Ames Williams' Coconuts Problem, The Winnower, 3 (2016), e147175.52128. doi: 10.15200/winn.147175.52128
FORMULA
a(n) = ((n-1)^(n-1) - 1)/n, if n is odd.
a(n) = ((n-1)^n - 1)/n, if n is even.
a(n) = ((n-1)^(n - 1/2 + (-1)^n/2) - 1)/n = (n^A052928(n) - 1)/n. - Omar E. Pol, Aug 24 2016
MAPLE
seq(((n-1)^(n-1/2+(-1)^n/2)-1)/n, n=1..30); # Robert Israel, Aug 26 2016
MATHEMATICA
Join[{0}, Table[((n - 1)^(n - 1/2 + (-1)^n/2) - 1)/n, {n, 2, 30}]] (* Bruno Berselli, Aug 26 2016 *)
PROG
(PARI) a(n) = ((n-1)^(n-1/2+(-1)^n/2)-1)/n \\ Felix Fröhlich, Aug 26 2016
(Magma) [((n-1)^(n-1 div 2 +(-1)^n div 2)-1) div n: n in [1..25]]; // Vincenzo Librandi, May 15 2019
CROSSREFS
Sequence in context: A049390 A220040 A128905 * A350115 A211143 A183047
KEYWORD
nonn,easy
AUTHOR
Mark Richardson, Aug 21 2016
STATUS
approved