login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275206
Expansion of (A(x)^2 - A(x^2))/2 where A(x) = A000108(x) - 1.
1
0, 0, 0, 2, 6, 24, 80, 286, 994, 3536, 12576, 45220, 163372, 594320, 2172768, 7983990, 29464010, 109174560, 405990464, 1514797020, 5669004692, 21275014800, 80047213792, 301892460012, 1141068949396, 4321730134624, 16399422014400, 62340424959176, 237373155238104, 905251034394784
OFFSET
0,4
COMMENTS
Number of ways to distribute n pairs of parentheses into 2 distinct patterns where each pattern represents a Catalan ordering (A000108), and each pattern must contain at least one pair of parentheses.
If one of the groups is allowed to have no parentheses, we arrive at A000150 (with a different offset).
Analog of A216785 with Catalan number replacing connected graph counts.
From Petros Hadjicostas, Jul 27 2020: (Start)
It is proved in A050182 that A050182(n) = 1/(2*n + 4)*(binomial(2*n + 4, n) - [(n mod 2) == 0]*binomial(n + 2, n/2)).
Let C(x) = A(x) + 1 = Sum_{n >= 0} c(n)*x^n be the g.f. of the Catalan numbers A000108. Then C(x)^2 = (C(x) - 1)/x. Then (A(x) + 1)^2 = A(x)/x, and thus, A(x)^2 = -2*A(x) - 1 + A(x)/x. Thus, (A(x)^2 - A(x^2))/2 = (-2*A(x) - 1 + A(x)/x - A(x^2))/2.
Substituting A(x) = Sum_{n >= 1} c(n)*x^n in the above expression, we get (after some algebra) that a(n) = (-2*c(n) + c(n+1) - [(n mod 2) == 0]*c(n/2))/2 for n >= 1. It is then easy to prove that a(n) = 2*A050182(n-2) = (1/n)*(binomial(2*n, n-2) - [(n mod 2) == 0]*binomial(n, (n/2) - 1)) for n >= 2, thus proving the conjecture below. (End)
FORMULA
a(2*n+1) = A007223(2*n+1).
Conjecture: a(n) = 2*A050182(n-2) for n >= 2.
From Petros Hadjicostas, Jul 27 2020: (Start)
a(n) = (-2*c(n) + c(n+1) - [(n mod 2) == 0]*c(n/2))/2 for n >= 1, where c = A000108.
a(n) = (1/n)*(binomial(2*n, n-2) - [(n mod 2) == 0]*binomial(n, (n/2) - 1)) for n >= 2. (End)
MATHEMATICA
A[x_] = (1 - Sqrt[1 - 4x])/(2x) - 1;
CoefficientList[(A[x]^2 - A[x^2])/2 + O[x]^30, x] (* Jean-François Alcover, Apr 30 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
R. J. Mathar, Jul 19 2016
STATUS
approved