login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274420
Decimal expansion of V_5, a Quantum Field Theory constant [negated] related to the coloring of the tetrahedron with five masses.
9
8, 2, 1, 6, 8, 5, 9, 8, 1, 7, 5, 0, 8, 7, 3, 8, 0, 6, 2, 9, 1, 3, 3, 9, 8, 3, 3, 8, 6, 0, 1, 0, 8, 5, 8, 2, 4, 9, 6, 9, 5, 0, 8, 3, 3, 9, 1, 7, 2, 5, 7, 5, 0, 3, 6, 8, 3, 5, 5, 7, 5, 7, 9, 1, 1, 5, 3, 3, 5, 1, 9, 6, 8, 1, 6, 3, 1, 9, 2, 6, 2, 3, 1, 2, 2, 4, 2, 9, 9, 0, 3, 4, 1, 4, 0, 6, 1, 1, 9, 6, 8
OFFSET
1,1
REFERENCES
Jonathan Borwein and Peter Borwein, Experimental and Computational Mathematics: Selected Writings, Perfectly Scientific Press, 2010, p. 106.
FORMULA
V_5 = 6 zeta(3) - 469/27 zeta(4) + 8/3 C^2 - 16 V, where C is A143298 and V A274400.
EXAMPLE
-8.21685981750873806291339833860108582496950833917257503683557579115...
MATHEMATICA
digits = 101;
C0 = A143298 = (9 - PolyGamma[1, 2/3] + PolyGamma[1, 4/3])/(4*Sqrt[3]);
v[k_] := ((-1)^k*((24*(k - 1)*(3*k - 4))/(3*k - 2)^3 + (8*(3*k*(3*k - 5) + 4))/(27*(k - 1)^3) + PolyGamma[2, (3*k)/2 - 1] - PolyGamma[2, (3*(k - 1))/2]))/(48*(k - 1)*(3*k - 4)*(3*k - 2));
V = A274400 = 3 Zeta[3]/8 - 1/2 + NSum[v[k], {k, 2, Infinity}, WorkingPrecision -> digits + 10, Method -> "AlternatingSigns"];
V5 = 6 Zeta[3] - 469/27 Zeta[4] + 8/3 C0^2 - 16 V;
RealDigits[V5, 10, digits][[1]]
CROSSREFS
Cf. A274412 (V_1), A274413 (V_2A), A274414 (V_2N), A274415 (V_3T), A274416 (V_3S), A274417 (V_3L), A274418 (V_4A), A274419 (V_4N), A274421 (V_6).
Sequence in context: A157472 A346834 A179640 * A147868 A073442 A177428
KEYWORD
nonn,cons
AUTHOR
STATUS
approved