The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A346834 Decimal expansion of 2*Pi*Integral_{-oo<=x<=oo} log(1/2 + i*x)^4 / (exp(-Pi*x) + exp(Pi*x))^2, negated. 4
 0, 0, 8, 2, 1, 5, 3, 3, 7, 6, 8, 1, 2, 1, 3, 3, 8, 3, 4, 6, 4, 6, 4, 0, 1, 8, 6, 1, 7, 1, 0, 1, 3, 5, 3, 7, 1, 4, 2, 8, 6, 3, 2, 1, 7, 7, 8, 1, 6, 4, 2, 4, 7, 2, 9, 8, 1, 9, 2, 5, 9, 3, 3, 3, 4, 7, 6, 5, 5, 3, 3, 7, 9, 6, 8, 4, 5, 1, 8, 8, 0, 2, 1, 4, 2, 8, 2, 2 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Let b(n) = 2*Pi*Integral_{-oo<=x<=oo} log(1/2 + i*x)^n / (exp(-Pi*x) + exp(Pi*x))^2, then B(s) = Sum_{n>=0} b(n)*s^n/n! = -s*zeta(1 - s) is the Bernoulli function. LINKS Table of n, a(n) for n=0..87. Peter H. N. Luschny, An introduction to the Bernoulli function, arXiv:2009.06743 [math.HO], 2020. EXAMPLE 0.0082153376812133834646401861710135371428632177816... CROSSREFS Cf. A001620 (n=1), A346833 (n=2), A346833 (n=3), this sequence (n=4), A346835 (n=5), A346836 (n=6). Sequence in context: A368300 A021553 A157472 * A179640 A274420 A147868 Adjacent sequences: A346831 A346832 A346833 * A346835 A346836 A346837 KEYWORD nonn,cons AUTHOR Peter Luschny, Aug 05 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 2 22:39 EDT 2024. Contains 374875 sequences. (Running on oeis4.)