|
|
A274422
|
|
Numbers m such that there exists a j for which m = Sum_{k=1..j} (m mod k), where k runs through the largest j primes less than m.
|
|
3
|
|
|
13, 17, 20, 23, 24, 34, 40, 82, 126, 200, 612, 1154, 1692, 2434, 2806, 3060, 3142, 4052, 4460, 4596, 5020, 5908, 6424, 7304, 7596, 8030, 8040, 9044, 11398, 12254, 12914, 13412, 13716, 16006, 16800, 18560, 22438, 23140, 24424, 24746, 25706, 28318, 29272, 30580
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Paolo P. Lava, Table of n, a(n) for n = 1..250
Paolo P. Lava, First 200 terms with the number of primes j
|
|
EXAMPLE
|
13 mod 11 + 13 mod 7 + 13 mod 5 + 13 mod 3 + 13 mod 2 = 2 + 6 + 3 + 1 + 1 = 13;
40 mod 37 + 40 mod 31 + 40 mod 29 + 40 mod 23 = 3 + 9 + 11 + 17 = 40.
|
|
MAPLE
|
P:=proc(q) local a, b, k, n; for n from 3 to q do a:=0; b:=prevprime(n);
while n>a do a:=a+(n mod b); if b>2 then b:=prevprime(b); else break; fi; od;
if n=a then print(n); fi; od; end: P(10^9);
|
|
CROSSREFS
|
Cf. A000040, A024934, A274423, A274424.
Sequence in context: A288612 A109775 A108560 * A134257 A272078 A205722
Adjacent sequences: A274419 A274420 A274421 * A274423 A274424 A274425
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Paolo P. Lava, Jun 21 2016
|
|
STATUS
|
approved
|
|
|
|