|
|
A272078
|
|
Numbers k such that k^2 + 1 is product of 3 distinct primes.
|
|
2
|
|
|
13, 17, 21, 23, 27, 31, 33, 37, 53, 55, 63, 67, 72, 75, 77, 81, 87, 89, 91, 97, 98, 103, 105, 109, 111, 112, 113, 115, 119, 122, 125, 127, 128, 129, 135, 137, 138, 142, 147, 148, 149, 151, 153, 155, 161, 162, 163, 167, 172, 174, 179, 185, 189, 192, 197, 200, 208
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Daniel Starodubtsev, Table of n, a(n) for n = 1..1000
|
|
EXAMPLE
|
13 appears in the list because 13^2 + 1 = 170 = 2 * 5 * 17.
21 appears in the list because 21^2 + 1 = 442 = 2 * 13 * 17.
|
|
MATHEMATICA
|
A272078 = {}; Do[ k = Last /@ FactorInteger[n^2 + 1]; If[k == {1, 1, 1}, AppendTo[A272078, n]], {n, 1000}]; A272078
Select[Range[1000], Last /@ FactorInteger[#^2 + 1] == {1, 1, 1} &]
|
|
PROG
|
(PARI) isok(k) = my(x=k^2+1); (omega(x)==3) && (bigomega(x)==3); \\ Michel Marcus, Mar 11 2020
|
|
CROSSREFS
|
Cf. A007304, A046386, A176686, A176687.
Sequence in context: A108560 A274422 A134257 * A205722 A105731 A060343
Adjacent sequences: A272075 A272076 A272077 * A272079 A272080 A272081
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
K. D. Bajpai, Apr 19 2016
|
|
STATUS
|
approved
|
|
|
|