The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A273263 Irregular triangle read by rows: T(n,k) is the sum of the elements of the k-th column of the difference table of the divisors of n. 5
 1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 4, 5, 6, 6, 7, 7, 4, 6, 8, 8, 7, 9, 9, 4, 7, 10, 10, 11, 11, 4, 6, 8, 10, 12, 12, 13, 13, 4, 9, 14, 14, 11, 13, 15, 15, 5, 8, 12, 16, 16, 17, 17, 12, 11, 12, 15, 18, 18, 19, 19, -3, 4, 10, 15, 20, 20, 13, 17, 21, 21, 4, 13, 22, 22, 23, 23, -4, 3, 8, 12, 16, 20, 24, 24, 21, 25, 25 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS If n is prime then row n is [n, n]. It appears that the last two terms of the n-th row are [n, n], n > 1. First differs from A274533 at a(38). LINKS EXAMPLE Triangle begins:    1;    2,  2;    3,  3;    3,  4,  4;    5,  5;    4,  5,  6,  6;    7,  7;    4,  6,  8,  8;    7,  9,  9;    4,  7, 10, 10;   11, 11;    4,  6,  8, 10, 12, 12;   13, 13;    4,  9, 14, 14;   11, 13, 15, 15;    5,  8, 12, 16, 16;   17, 17;   12, 11, 12, 15, 18, 18;   19, 19;   -3,  4, 10, 15, 20, 20;   13, 17, 21, 21;    4, 13, 22, 22;   23, 23;   -4,  3,  8, 12, 16, 20, 24, 24;   21, 25, 25;    4, 15, 26, 26;   ... For n = 18 the divisors of 18 are 1, 2, 3, 6, 9, 18, and the difference triangle of the divisors is    1,  2,  3,  6,  9, 18;    1,  1,  3,  3,  9;    0,  2,  0,  6;    2, -2,  6;   -4,  8;   12; The column sums give [12, 11, 12, 15, 18, 18] which is also the 18th row of the irregular triangle. MATHEMATICA Table[Total /@ Transpose@ Map[Function[w, PadRight[w, Length@ #]], NestWhileList[Differences, #, Length@ # > 1 &]] &@ Divisors@ n, {n, 25}] // Flatten (* Michael De Vlieger, Jun 26 2016 *) PROG (PARI) row(n) = {my(d = divisors(n)); my(nd = #d); my(m = matrix(#d, #d)); for (j=1, nd, m[1, j] = d[j]; ); for (i=2, nd, for (j=1, nd - i +1, m[i, j] = m[i-1, j+1] - m[i-1, j]; ); ); vector(nd, j, sum(i=1, nd, m[i, j])); } tabf(nn) = for (n=1, nn, print(row(n)); ); lista(nn) = for (n=1, nn, v = row(n); for (j=1, #v, print1(v[j], ", ")); ); \\ Michel Marcus, Jun 25 2016 CROSSREFS Row lengths give A000005. Right border gives A000027. Column 1 is A161857. Row sums give A273103. Cf. A187202, A273102, A273135, A272210, A273136, A273261, A273262, A274533. Sequence in context: A189717 A219519 A330393 * A274533 A163127 A077113 Adjacent sequences:  A273260 A273261 A273262 * A273264 A273265 A273266 KEYWORD sign,tabf AUTHOR Omar E. Pol, May 22 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 19 17:44 EDT 2022. Contains 353847 sequences. (Running on oeis4.)