login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272862
Positive integers j such that prime(i) + prime(j) = i*j for some i <= j.
3
4, 6, 8, 24, 29, 30, 164, 165, 166, 1051, 2624, 2638, 2650, 2670, 2674, 2676, 40027, 40028, 40112, 251701, 251703, 251706, 251751, 637144, 637202, 637216, 637220, 1617162, 1617165, 4124694, 10553383, 10553408, 10553464, 10553533, 10553535, 10553839, 69709686
OFFSET
1,1
COMMENTS
Also pi(q) for primes q verifying p+q = pi(p)*pi(q) for some prime p <= q.
The list of products i*j gives A272860. See also comments there.
LINKS
Giuseppe Coppoletta, Table of n, a(n) for n = 1..43
EXAMPLE
8 is a term as prime(3) + prime(8) = 3*8.
MATHEMATICA
Select[Range[3000], Function[j, Total@ Boole@ Map[Prime@ # + Prime@ j == # j &, Range@ j] > 0]] (* Michael De Vlieger, Jul 28 2016 *)
PROG
(Sage) def sol(n):
if n<5: a=n
else: a=exp(n+1)/(n+1)
b=(n-1)/n^2*exp(n^2/(n-1.1))
return [j for j in range(a, b) if is_prime(n*j-nth_prime(n)) and prime_pi(n*j-nth_prime(n))==j]
flatten([sol(i) for i in (1..15) if len(sol(i))>0]) #
(PARI) is(n) = for(i=1, n, if(prime(i)+prime(n)==i*n, return(1))); return(0) \\ Felix Fröhlich, Jul 27 2016
(PARI) is(n, p=prime(n))=my(i); forprime(q=2, p, if(i++*n==p+q, return(1))); 0
v=List(); n=0; forprime(p=2, 1e6, if(is(n++, p), listput(v, n))); Vec(v) \\ Charles R Greathouse IV, Jul 28 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Giuseppe Coppoletta, Jul 25 2016
STATUS
approved