|
|
A063719
|
|
Numbers n such that usigma(cototient(n)) is a prime.
|
|
0
|
|
|
4, 6, 8, 24, 28, 32, 384, 448, 496, 508, 512, 98304, 114688, 126976, 130048, 131056, 131072
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
If usigma(x) is prime, it must be a Fermat prime. It is conjectured that there are only 5 Fermat primes. If this conjecture is true, this sequence has no more terms. - David Wasserman, Jul 09 2002
|
|
LINKS
|
Table of n, a(n) for n=1..17.
|
|
EXAMPLE
|
131072 is in the sequence because A034448(A051953(131072)) = A034448(65536) = 65537, a prime.
|
|
PROG
|
(PARI) u(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d)); c(n) = n-eulerphi(n); for(n=1, 10^8, if(isprime(u(c(n))), print(n)))
|
|
CROSSREFS
|
Cf. A034448, A051953.
Sequence in context: A083790 A217201 A074125 * A272862 A361662 A106366
Adjacent sequences: A063716 A063717 A063718 * A063720 A063721 A063722
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Jason Earls, Aug 23 2001
|
|
STATUS
|
approved
|
|
|
|