login
A361662
Least number k >= 1 such that A074206(k) is divisible by n.
5
1, 4, 6, 8, 24, 48, 96, 12, 216, 24, 60, 48, 30, 96, 210, 32, 288, 216, 72, 24, 216, 60, 240, 48, 210, 36, 6480, 96, 15552, 4320, 7560, 64, 120, 288, 2520, 216, 5040, 72, 960, 768, 2520, 216, 576, 60, 83160, 240, 7680, 48, 18480, 13860, 7776, 144, 1152, 6480
OFFSET
1,2
COMMENTS
a(n) exists for all n. (This is problem 5 of the first round of the British Mathematical Olympiad 2022/2023.)
All terms are in A025487.
LINKS
Pontus von Brömssen, Table of n, a(n) for n = 1..10000
British Mathematical Olympiad, Round 1, Problem 5, 2022/2023.
FORMULA
a(n) = A025487(A361663(n)).
PROG
(PARI) f(n)={if(!n, 0, my(sig=factor(n)[, 2], m=vecsum(sig)); sum(k=0, m, prod(i=1, #sig, binomial(sig[i]+k-1, k-1))*sum(r=k, m, binomial(r, k)*(-1)^(r-k))))}; \\ A074206
a(n) = my(k=1); while (f(k) % n, k++); k; \\ Michel Marcus, Mar 23 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved