OFFSET
1,2
COMMENTS
a(n) exists for all n. (This is problem 5 of the first round of the British Mathematical Olympiad 2022/2023.)
All terms are in A025487.
LINKS
Pontus von Brömssen, Table of n, a(n) for n = 1..10000
British Mathematical Olympiad, Round 1, Problem 5, 2022/2023.
PROG
(PARI) f(n)={if(!n, 0, my(sig=factor(n)[, 2], m=vecsum(sig)); sum(k=0, m, prod(i=1, #sig, binomial(sig[i]+k-1, k-1))*sum(r=k, m, binomial(r, k)*(-1)^(r-k))))}; \\ A074206
a(n) = my(k=1); while (f(k) % n, k++); k; \\ Michel Marcus, Mar 23 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Pontus von Brömssen, Mar 20 2023
STATUS
approved