Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Aug 11 2016 05:46:55
%S 4,6,8,24,29,30,164,165,166,1051,2624,2638,2650,2670,2674,2676,40027,
%T 40028,40112,251701,251703,251706,251751,637144,637202,637216,637220,
%U 1617162,1617165,4124694,10553383,10553408,10553464,10553533,10553535,10553839,69709686
%N Positive integers j such that prime(i) + prime(j) = i*j for some i <= j.
%C Also pi(q) for primes q verifying p+q = pi(p)*pi(q) for some prime p <= q.
%C The list of products i*j gives A272860. See also comments there.
%H Giuseppe Coppoletta, <a href="/A272862/b272862.txt">Table of n, a(n) for n = 1..43</a>
%e 8 is a term as prime(3) + prime(8) = 3*8.
%t Select[Range[3000], Function[j, Total@ Boole@ Map[Prime@ # + Prime@ j == # j &, Range@ j] > 0]] (* _Michael De Vlieger_, Jul 28 2016 *)
%o (Sage) def sol(n):
%o if n<5: a=n
%o else: a=exp(n+1)/(n+1)
%o b=(n-1)/n^2*exp(n^2/(n-1.1))
%o return [j for j in range(a,b) if is_prime(n*j-nth_prime(n)) and prime_pi(n*j-nth_prime(n))==j]
%o flatten([sol(i) for i in (1..15) if len(sol(i))>0]) #
%o (PARI) is(n) = for(i=1, n, if(prime(i)+prime(n)==i*n, return(1))); return(0) \\ _Felix Fröhlich_, Jul 27 2016
%o (PARI) is(n,p=prime(n))=my(i); forprime(q=2,p, if(i++*n==p+q, return(1))); 0
%o v=List(); n=0; forprime(p=2,1e6, if(is(n++,p), listput(v,n))); Vec(v) \\ _Charles R Greathouse IV_, Jul 28 2016
%Y Cf. A272860, A272861, A000720, A000040.
%K nonn
%O 1,1
%A _Giuseppe Coppoletta_, Jul 25 2016