login
A272710
Primes of the form abs((1/4)*(n^5 - 133n^4 + 6729n^3 - 158379n^2 + 1720294n - 6823316)) in order of increasing nonnegative n.
3
1705829, 1313701, 991127, 729173, 519643, 355049, 228581, 134077, 65993, 19373, 10181, 26539, 33073, 32687, 27847, 20611, 12659, 5323, 383, 3733, 4259, 1721, 3923, 12547, 23887, 37571, 53149, 70123, 87977, 106207, 124351, 142019, 158923, 174907, 189977
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Prime-Generating Polynomials
EXAMPLE
519643 is in this sequence since abs(1/4 (n^5 - 133n^4 + 6729n^3 - 158379n^2 + 1720294n - 6823316)) = abs((1024 - 34048 + 430656 - 2534064 + 6881176 - 6823316)/4) = 519643 is prime.
MATHEMATICA
n = Range[0, 100]; Select[1/4 (n^5 - 133n^4 + 6729n^3 - 158379n^2 + 1720294n - 6823316), PrimeQ[#] &]
KEYWORD
nonn
AUTHOR
Robert Price, May 04 2016
STATUS
approved