login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272536
Decimal expansion of the edge length of a regular 20-gon with unit circumradius.
4
3, 1, 2, 8, 6, 8, 9, 3, 0, 0, 8, 0, 4, 6, 1, 7, 3, 8, 0, 2, 0, 2, 1, 0, 6, 3, 8, 9, 3, 4, 3, 3, 3, 7, 8, 4, 6, 2, 7, 7, 9, 9, 7, 8, 4, 1, 7, 1, 3, 2, 1, 5, 8, 0, 1, 6, 9, 2, 8, 2, 6, 9, 2, 1, 1, 5, 5, 1, 7, 5, 8, 6, 6, 1, 1, 2, 4, 7, 1, 5, 8, 6, 7, 3, 3, 9, 1, 7, 4, 5, 3, 5, 3, 6, 9, 7, 3, 7, 6, 7, 5, 0, 2, 8, 0
OFFSET
0,1
COMMENTS
Since 20-gon is constructible (see A003401), this is a constructible number.
LINKS
Mauro Fiorentini, Construibili (numeri)
Eric Weisstein's World of Mathematics, Constructible Number
Wikipedia, Regular polygon
FORMULA
Equals 2*sin(Pi/20) = 2*A019818.
Equals also (sqrt(2)+sqrt(10)-2*sqrt(5-sqrt(5)))/4.
Equals i^(9/10) + i^(-9/10). - Gary W. Adamson, Jul 08 2022
EXAMPLE
0.3128689300804617380202106389343337846277997841713215801692826921...
MATHEMATICA
RealDigits[N[2Sin[Pi/20], 100]][[1]] (* Robert Price, May 02 2016*)
PROG
(PARI) 2*sin(Pi/20)
CROSSREFS
Cf. A003401.
Edge lengths of other constructible m-gons: A002194 (m=3), A002193 (4), A182007 (5), A101464 (8), A094214 (10), A101263 (12), A272534 (15), A272535 (16), A228787 (17).
Cf. A019818.
Sequence in context: A204128 A266272 A201677 * A204122 A201657 A279384
KEYWORD
nonn,cons,easy
AUTHOR
Stanislav Sykora, May 02 2016
STATUS
approved