Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Jul 08 2022 20:48:32
%S 3,1,2,8,6,8,9,3,0,0,8,0,4,6,1,7,3,8,0,2,0,2,1,0,6,3,8,9,3,4,3,3,3,7,
%T 8,4,6,2,7,7,9,9,7,8,4,1,7,1,3,2,1,5,8,0,1,6,9,2,8,2,6,9,2,1,1,5,5,1,
%U 7,5,8,6,6,1,1,2,4,7,1,5,8,6,7,3,3,9,1,7,4,5,3,5,3,6,9,7,3,7,6,7,5,0,2,8,0
%N Decimal expansion of the edge length of a regular 20-gon with unit circumradius.
%C Since 20-gon is constructible (see A003401), this is a constructible number.
%H Stanislav Sykora, <a href="/A272536/b272536.txt">Table of n, a(n) for n = 0..2000</a>
%H Mauro Fiorentini, <a href="http://www.bitman.name/math/article/264">Construibili (numeri)</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ConstructibleNumber.html">Constructible Number</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Constructible_number">Constructible number</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Regular_polygon">Regular polygon</a>
%F Equals 2*sin(Pi/20) = 2*A019818.
%F Equals also (sqrt(2)+sqrt(10)-2*sqrt(5-sqrt(5)))/4.
%F Equals i^(9/10) + i^(-9/10). - _Gary W. Adamson_, Jul 08 2022
%e 0.3128689300804617380202106389343337846277997841713215801692826921...
%t RealDigits[N[2Sin[Pi/20], 100]][[1]] (* _Robert Price_, May 02 2016*)
%o (PARI) 2*sin(Pi/20)
%Y Cf. A003401.
%Y Edge lengths of other constructible m-gons: A002194 (m=3), A002193 (4), A182007 (5), A101464 (8), A094214 (10), A101263 (12), A272534 (15), A272535 (16), A228787 (17).
%Y Cf. A019818.
%K nonn,cons,easy
%O 0,1
%A _Stanislav Sykora_, May 02 2016