login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279384
T(n,k)=Number of nXk 0..1 arrays with no element equal to a strict majority of its horizontal, vertical and antidiagonal neighbors, with new values introduced in order 0 sequentially upwards.
8
1, 1, 1, 1, 3, 1, 2, 8, 8, 2, 3, 22, 35, 22, 3, 5, 61, 157, 157, 61, 5, 8, 170, 695, 1101, 695, 170, 8, 13, 472, 3157, 7905, 7905, 3157, 472, 13, 21, 1310, 14243, 58009, 92803, 58009, 14243, 1310, 21, 34, 3637, 64170, 421999, 1098640, 1098640, 421999, 64170, 3637, 34
OFFSET
1,5
COMMENTS
Table starts
..1.....1.......1.........2...........3.............5...............8
..1.....3.......8........22..........61...........170.............472
..1.....8......35.......157.........695..........3157...........14243
..2....22.....157......1101........7905.........58009..........421999
..3....61.....695......7905.......92803.......1098640........12957948
..5...170....3157.....58009.....1098640......21144799.......404651396
..8...472...14243....421999....12957948.....404651396.....12564378389
.13..1310...64170...3067328...152622739....7733370493....389417147928
.21..3637..289200..22304530..1798168331..147824883279..12073180118618
.34.10099.1303737.162224094.21189754515.2826526873740.374420804035101
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2) for n>3
k=2: a(n) = 2*a(n-1) +a(n-2) +2*a(n-3) +3*a(n-4) +a(n-5)
k=3: [order 18]
k=4: [order 57] for n>58
EXAMPLE
Some solutions for n=4 k=4
..0..1..0..1. .0..0..1..1. .0..1..1..1. .0..1..0..1. .0..1..0..1
..0..0..0..1. .1..1..0..0. .1..0..0..0. .0..1..0..1. .1..0..1..0
..1..1..0..1. .0..1..1..0. .1..0..1..1. .0..1..0..0. .1..0..1..0
..0..0..1..0. .1..0..0..1. .1..0..0..1. .0..1..1..0. .1..0..0..1
CROSSREFS
Column 1 is A000045(n-1).
Sequence in context: A272536 A204122 A201657 * A086961 A204003 A085194
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 11 2016
STATUS
approved