login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271451
Triangle read by rows of coefficients of polynomials Q_n(x) = 2^(-n)*((x + sqrt(x*(x + 6) - 3) + 1)^n - (x - sqrt(x*(x + 6) - 3) + 1)^n)/sqrt(x*(x + 6) - 3).
1
1, 1, 1, 0, 3, 1, -1, 3, 5, 1, -1, -1, 10, 7, 1, 0, -6, 7, 21, 9, 1, 1, -6, -10, 31, 36, 11, 1, 1, 1, -29, 7, 79, 55, 13, 1, 0, 9, -24, -63, 81, 159, 78, 15, 1, -1, 9, 15, -123, -54, 264, 279, 105, 17, 1, -1, -1, 57, -69, -321, 132, 624, 447, 136, 19, 1, 0, -12, 50, 126, -459, -507, 741, 1245, 671, 171, 21, 1, 1, -12, -20, 302, -81, -1419, -258, 2163, 2227, 959, 210, 23, 1
OFFSET
1,5
COMMENTS
The polynomials Q_n(x) have generating function G(x,t) = t/(1 - (x + 1)*t - (x - 1)*t^2) = t + (x + 1)*t^2 + x*(x + 3)*t^3 + (x^3 + 5*x^2 + 3*x - 1)*t^4 + ...
Q_n(x) can be defined by the recurrence relation Q_n(x) = (x + 1)*Q_(n-1)(x) + (x - 1)*Q_(n-2)(x), Q_0(x)=0, Q_1(x)=1.
Discriminants of Q_n(x) gives the sequence: 0, 1, 1, 9, 320, 35600, 10948608, 8664190976, 16836271800320, 77757312009240576, 833309554769920000000, 20346889104219547132493824,...
Q_n(0) = A128834(n).
Q_n(1) = A000079(n-1), n>0.
Q_n(2) = A006190(n).
Q_n(3) = A090017(n).
Q_n(4) = A015536(n).
Q_n(5) = A135032(n).
Q_n(6) = A015562(n).
Q_n(7) = A190560(n).
Q_n(8) = A015583(n).
Q_n(9) = A190957(n).
Q_n(10) = A015603(n).
LINKS
Ilya Gutkovskiy, Polynomials Q_n(x)
Eric Weisstein's World of Mathematics, Fibonacci Polynomial
EXAMPLE
Triangle begins:
1;
1, 1;
0, 3, 1;
-1, 3, 5, 1;
-1, -1, 10, 7, 1;
...
The first few polynomials are:
Q_0(x) = 0;
Q_1(x) = 1;
Q_2(x) = x + 1;
Q_3(x) = x^2 + 3*x;
Q_4(x) = x^3 + 5*x^2 + 3*x - 1;
Q_5(x) = x^4 + 7*x^3 + 10*x^2 - x - 1,
...
MATHEMATICA
Flatten[Table[CoefficientList[((x + Sqrt[x (x + 6) - 3] + 1)^n - (x - Sqrt[x (x + 6) - 3] + 1)^n)/2^n/Sqrt[x (x + 6) - 3], x], {n, 0, 13}]]
CROSSREFS
Cf. A049310.
Sequence in context: A247282 A246685 A218618 * A131248 A116445 A110291
KEYWORD
sign,tabl,easy
AUTHOR
Ilya Gutkovskiy, Apr 08 2016
STATUS
approved