OFFSET
1,5
COMMENTS
The polynomials Q_n(x) have generating function G(x,t) = t/(1 - (x + 1)*t - (x - 1)*t^2) = t + (x + 1)*t^2 + x*(x + 3)*t^3 + (x^3 + 5*x^2 + 3*x - 1)*t^4 + ...
Q_n(x) can be defined by the recurrence relation Q_n(x) = (x + 1)*Q_(n-1)(x) + (x - 1)*Q_(n-2)(x), Q_0(x)=0, Q_1(x)=1.
Discriminants of Q_n(x) gives the sequence: 0, 1, 1, 9, 320, 35600, 10948608, 8664190976, 16836271800320, 77757312009240576, 833309554769920000000, 20346889104219547132493824,...
Q_n(0) = A128834(n).
Q_n(1) = A000079(n-1), n>0.
Q_n(2) = A006190(n).
Q_n(3) = A090017(n).
Q_n(4) = A015536(n).
Q_n(5) = A135032(n).
Q_n(6) = A015562(n).
Q_n(7) = A190560(n).
Q_n(8) = A015583(n).
Q_n(9) = A190957(n).
Q_n(10) = A015603(n).
LINKS
G. C. Greubel, Table of n, a(n) for the first 101 rows, flattened
Ilya Gutkovskiy, Polynomials Q_n(x)
Eric Weisstein's World of Mathematics, Fibonacci Polynomial
EXAMPLE
Triangle begins:
1;
1, 1;
0, 3, 1;
-1, 3, 5, 1;
-1, -1, 10, 7, 1;
...
The first few polynomials are:
Q_0(x) = 0;
Q_1(x) = 1;
Q_2(x) = x + 1;
Q_3(x) = x^2 + 3*x;
Q_4(x) = x^3 + 5*x^2 + 3*x - 1;
Q_5(x) = x^4 + 7*x^3 + 10*x^2 - x - 1,
...
MATHEMATICA
Flatten[Table[CoefficientList[((x + Sqrt[x (x + 6) - 3] + 1)^n - (x - Sqrt[x (x + 6) - 3] + 1)^n)/2^n/Sqrt[x (x + 6) - 3], x], {n, 0, 13}]]
CROSSREFS
KEYWORD
AUTHOR
Ilya Gutkovskiy, Apr 08 2016
STATUS
approved