This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A271453 Triangle read by rows of coefficients of polynomials C_n(x) = Sum_(k=0..n} (2*k)!*(x - 1)^(n-k)/((k + 1)!*k!). 1
 1, 0, 1, 2, -1, 1, 3, 3, -2, 1, 11, 0, 5, -3, 1, 31, 11, -5, 8, -4, 1, 101, 20, 16, -13, 12, -5, 1, 328, 81, 4, 29, -25, 17, -6, 1, 1102, 247, 77, -25, 54, -42, 23, -7, 1, 3760, 855, 170, 102, -79, 96, -65, 30, -8, 1, 13036, 2905, 685, 68, 181, -175, 161, -95, 38, -9, 1, 45750, 10131, 2220, 617, -113, 356, -336, 256, -133, 47, -10, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS The polynomials C_n(x) have generating function G(x,t) = (1 - sqrt(1 - 4*t))/(2*t*(1 + t - x*t)) = 1 + x*t + (x^2 - x + 2)*t^2 + (x^3 - 2*x^2 + 3*x + 3)*t^3 + ... C_n(x) can be defined by the recurrence relation C_n(x) = (x - 1)*C_(n-1)(x) + (2n)!/((n + 1)!*n!), C_0(x) = 1 or the equivalent form C_n(x) = (x - 1)*C_(n-1)(x) + C_n(1), C_0(x) = 1. C_n(x) can be defined as convolution of Catalan numbers and powers of (x - 1). Discriminants of C_n(x) gives the sequence: 1, 1, -7, -543, 533489, 7080307052, -1318026434480736, -3526797951451513832247, 137992774365121594001729513153, ... C_n(0) = A032357(n). C_n(1) = C_n(x) - (x - 1)*C_(n-1)(x) = A000108(n). C_n(2) = Sum_{m=0..n} C_1(m) = A014137(n). C_n(3) = A014318(n). C_n(5) = A000346(n). C_n(6) = A046714(n). LINKS G. C. Greubel, Rows n=0..100 of triangle, flattened Ilya Gutkovskiy, Polynomials C_n(x) Eric Weisstein's World of Mathematics, Catalan Number FORMULA For triangle: T(n,n)=1, T(n,0) = Sum_{k=0..n} (-1)^(n-k)*(2*k)!/(k! * (k+1)!), T(n, k) = T(n-1, k-1) - T(n-1, k). - G. C. Greubel, Nov 04 2018 EXAMPLE Triangle begins:    1;    0,  1;    2, -1,  1;    3,  3, -2,  1;   11,  0,  5, -3,  1;   31, 11, -5,  8, -4,  1;   ... The first few polynomials are:   C_0(x) = 1;   C_1(x) = x;   C_2(x) = x^2 -   x   + 2;   C_3(x) = x^3 - 2*x^2 + 3*x   + 3;   C_4(x) = x^4 - 3*x^3 + 5*x^2         + 11;   C_5(x) = x^5 - 4*x^4 + 8*x^3 - 5*x^2 + 11*x + 31;   ... MATHEMATICA CoefficientList[RecurrenceTable[{c[0] == 1, c[n] == (x - 1) c[n - 1] + CatalanNumber[n]}, c, {n, 11}], x] T[n_, n_]:= 1; T[n_, 0]:= (-1)^n*Sum[CatalanNumber[k]*(-1)^k, {k, 0, n}]; T[n_, k_]:= T[n - 1, k - 1] - T[n - 1, k]; Table[T[n, k], {n, 0, 5}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 04 2018 *) PROG (PARI) {T(n, k) = if(k==n, 1, if(k==0, sum(j=0, n, (-1)^(n-j)*(2*j)!/(j!*(j+1)!)), T(n-1, k-1) - T(n-1, k))) }; for(n=0, 10, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Nov 04 2018 CROSSREFS Cf. A000108, A130595. Sequence in context: A153859 A131336 A052253 * A247749 A247367 A305321 Adjacent sequences:  A271450 A271451 A271452 * A271454 A271455 A271456 KEYWORD sign,tabl,easy AUTHOR Ilya Gutkovskiy, Apr 09 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 04:43 EST 2019. Contains 319323 sequences. (Running on oeis4.)