login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271453
Triangle read by rows of coefficients of polynomials C_n(x) = Sum_{k=0..n} (2*k)!*(x - 1)^(n-k)/((k + 1)!*k!).
1
1, 0, 1, 2, -1, 1, 3, 3, -2, 1, 11, 0, 5, -3, 1, 31, 11, -5, 8, -4, 1, 101, 20, 16, -13, 12, -5, 1, 328, 81, 4, 29, -25, 17, -6, 1, 1102, 247, 77, -25, 54, -42, 23, -7, 1, 3760, 855, 170, 102, -79, 96, -65, 30, -8, 1, 13036, 2905, 685, 68, 181, -175, 161, -95, 38, -9, 1, 45750, 10131, 2220, 617, -113, 356, -336, 256, -133, 47, -10, 1
OFFSET
0,4
COMMENTS
The polynomials C_n(x) have generating function G(x,t) = (1 - sqrt(1 - 4*t))/(2*t*(1 + t - x*t)) = 1 + x*t + (x^2 - x + 2)*t^2 + (x^3 - 2*x^2 + 3*x + 3)*t^3 + ...
C_n(x) can be defined by the recurrence relation C_n(x) = (x - 1)*C_(n-1)(x) + (2n)!/((n + 1)!*n!), C_0(x) = 1 or the equivalent form C_n(x) = (x - 1)*C_(n-1)(x) + C_n(1), C_0(x) = 1.
C_n(x) can be defined as convolution of Catalan numbers and powers of (x - 1).
Discriminants of C_n(x) gives the sequence: 1, 1, -7, -543, 533489, 7080307052, -1318026434480736, -3526797951451513832247, 137992774365121594001729513153, ...
C_n(0) = A032357(n).
C_n(1) = C_n(x) - (x - 1)*C_(n-1)(x) = A000108(n).
C_n(2) = Sum_{m=0..n} C_1(m) = A014137(n).
C_n(3) = A014318(n).
C_n(5) = A000346(n).
C_n(6) = A046714(n).
LINKS
Ilya Gutkovskiy, Polynomials C_n(x)
Eric Weisstein's World of Mathematics, Catalan Number
FORMULA
For triangle: T(n,n)=1, T(n,0) = Sum_{k=0..n} (-1)^(n-k)*(2*k)!/(k! * (k+1)!), T(n, k) = T(n-1, k-1) - T(n-1, k). - G. C. Greubel, Nov 04 2018
EXAMPLE
Triangle begins:
1;
0, 1;
2, -1, 1;
3, 3, -2, 1;
11, 0, 5, -3, 1;
31, 11, -5, 8, -4, 1;
...
The first few polynomials are:
C_0(x) = 1;
C_1(x) = x;
C_2(x) = x^2 - x + 2;
C_3(x) = x^3 - 2*x^2 + 3*x + 3;
C_4(x) = x^4 - 3*x^3 + 5*x^2 + 11;
C_5(x) = x^5 - 4*x^4 + 8*x^3 - 5*x^2 + 11*x + 31;
...
MATHEMATICA
CoefficientList[RecurrenceTable[{c[0] == 1, c[n] == (x - 1) c[n - 1] + CatalanNumber[n]}, c, {n, 11}], x]
T[n_, n_]:= 1; T[n_, 0]:= (-1)^n*Sum[CatalanNumber[k]*(-1)^k, {k, 0, n}]; T[n_, k_]:= T[n - 1, k - 1] - T[n - 1, k]; Table[T[n, k], {n, 0, 5}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 04 2018 *)
PROG
(PARI) {T(n, k) = if(k==n, 1, if(k==0, sum(j=0, n, (-1)^(n-j)*(2*j)!/(j!*(j+1)!)), T(n-1, k-1) - T(n-1, k))) };
for(n=0, 10, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Nov 04 2018
CROSSREFS
Sequence in context: A368343 A131336 A052253 * A247749 A247367 A305321
KEYWORD
sign,tabl,easy
AUTHOR
Ilya Gutkovskiy, Apr 09 2016
STATUS
approved