Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Jan 17 2018 09:42:51
%S 1,1,1,0,3,1,-1,3,5,1,-1,-1,10,7,1,0,-6,7,21,9,1,1,-6,-10,31,36,11,1,
%T 1,1,-29,7,79,55,13,1,0,9,-24,-63,81,159,78,15,1,-1,9,15,-123,-54,264,
%U 279,105,17,1,-1,-1,57,-69,-321,132,624,447,136,19,1,0,-12,50,126,-459,-507,741,1245,671,171,21,1,1,-12,-20,302,-81,-1419,-258,2163,2227,959,210,23,1
%N Triangle read by rows of coefficients of polynomials Q_n(x) = 2^(-n)*((x + sqrt(x*(x + 6) - 3) + 1)^n - (x - sqrt(x*(x + 6) - 3) + 1)^n)/sqrt(x*(x + 6) - 3).
%C The polynomials Q_n(x) have generating function G(x,t) = t/(1 - (x + 1)*t - (x - 1)*t^2) = t + (x + 1)*t^2 + x*(x + 3)*t^3 + (x^3 + 5*x^2 + 3*x - 1)*t^4 + ...
%C Q_n(x) can be defined by the recurrence relation Q_n(x) = (x + 1)*Q_(n-1)(x) + (x - 1)*Q_(n-2)(x), Q_0(x)=0, Q_1(x)=1.
%C Discriminants of Q_n(x) gives the sequence: 0, 1, 1, 9, 320, 35600, 10948608, 8664190976, 16836271800320, 77757312009240576, 833309554769920000000, 20346889104219547132493824,...
%C Q_n(0) = A128834(n).
%C Q_n(1) = A000079(n-1), n>0.
%C Q_n(2) = A006190(n).
%C Q_n(3) = A090017(n).
%C Q_n(4) = A015536(n).
%C Q_n(5) = A135032(n).
%C Q_n(6) = A015562(n).
%C Q_n(7) = A190560(n).
%C Q_n(8) = A015583(n).
%C Q_n(9) = A190957(n).
%C Q_n(10) = A015603(n).
%H G. C. Greubel, <a href="/A271451/b271451.txt">Table of n, a(n) for the first 101 rows, flattened</a>
%H Ilya Gutkovskiy, <a href="/A271451/a271451.pdf">Polynomials Q_n(x)</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/FibonacciPolynomial.html">Fibonacci Polynomial</a>
%e Triangle begins:
%e 1;
%e 1, 1;
%e 0, 3, 1;
%e -1, 3, 5, 1;
%e -1, -1, 10, 7, 1;
%e ...
%e The first few polynomials are:
%e Q_0(x) = 0;
%e Q_1(x) = 1;
%e Q_2(x) = x + 1;
%e Q_3(x) = x^2 + 3*x;
%e Q_4(x) = x^3 + 5*x^2 + 3*x - 1;
%e Q_5(x) = x^4 + 7*x^3 + 10*x^2 - x - 1,
%e ...
%t Flatten[Table[CoefficientList[((x + Sqrt[x (x + 6) - 3] + 1)^n - (x - Sqrt[x (x + 6) - 3] + 1)^n)/2^n/Sqrt[x (x + 6) - 3], x], {n, 0, 13}]]
%Y Cf. A049310.
%K sign,tabl,easy
%O 1,5
%A _Ilya Gutkovskiy_, Apr 08 2016