OFFSET
0,6
COMMENTS
The array is built by treating rows as Fibonacci-type sequences with seed values being two consecutive Fibonacci numbers (A000045(n) = F(n)) in reverse order: For row n, a(0) = F(n+1), a(1) = F(n). As a result, columns are Fibonacci-type sequences with seed values b(0) = F(k-1), b(1) = F(k+1); so starting with T(n,1), Row n == Column k=n+1.
Therefore, an alternative title is: Array T(n,k) read by diagonals: T(n,k) = T(n-1,k) + T(n-2,k) where T(0,k) = F(k-1) and T(1,k) = F(k+1), k>=1.
Patterns exist for certain generalized (a,b)-Pascal triangle transforms of row sequences. Definitions, explanation and examples (start):
Define (a,b)-Pascal triangles as having conditions T(0,0) = 1, a = left boundary and b = right boundary.
Let R_n be Row n, and R_n(k) be terms k in sequence R_n.
Let Tr_(k) be the (a,b)-Pascal triangle transform of R_n; define Tr_n(k) as when a = R_n(1) and b = R_n(0). Then Tr_n(k) = R_n(n+2k-2), k>=1. (Trivially, Tr_n(0) = R_n(0)).
For example, n=4: R_4 = {5, 3, 8, 11, 19, 30, 49, 79, 128, 207, 335, 542...}; a=3, b=5.
(3,5)-Pascal triangle is:
1
3 5
3 8 5
3 11 13 5
3 14 24 18 5
etc.
Transform Tr_4(k) is:
Tr_4(0) = 5*1 = 5 = R_4(0).
Tr_4(1) = 5*3 + 3*5 = 30 = R_4(5).
Tr_4(2) = 5*3 + 3*8 + 8*5 = 79 = R_4(7).
Tr_4(3) = 5*3 + 3*11 + 8*13 + 11*5 = 207 = R_4(9).
Tr_4(4) = 5*3 + 3*14 + 8*24 + 11*18 + 19*5 = 542 = R_4(11).
etc.
Examples of sequences where such transforms apply:
(end)
FORMULA
T(n,k) = T(n,k-1) + T(n,k-2) = T(n-1,k) + T(n-2,k).
T(n,n) = T(n-1,n+1) = A061646(n).
T(n,n+1) = A079472(n+1). Omitting T(n,0), the array is symmetric about this falling diagonal.
Treating rows and columns as individual sequences, let R_n be Row n and C_k be Column k; let R_n(k) and C_k(n) be terms k and n, respectively, in these sequences:
C_0(n) = A000045(n+1).
EXAMPLE
Array Starts:
n/k 0 1 2 3 4 5 6 7 8 9 10
0 1 0 1 1 2 3 5 8 13 21 34
1 1 1 2 3 5 8 13 21 34 55 89
2 2 1 3 4 7 11 18 29 47 76 123
3 3 2 5 7 12 19 31 50 81 131 212
4 5 3 8 11 19 30 49 79 128 207 335
5 8 5 13 18 31 49 80 129 209 338 547
6 13 8 21 29 50 79 129 208 337 545 882
7 21 13 34 47 81 128 209 337 546 883 1429
8 34 21 55 76 131 207 338 545 883 1428 2311
9 55 34 89 123 212 335 547 882 1429 2311 3740
10 89 55 144 199 343 542 885 1427 2312 3739 6051
T(9,2)=89 + T(9,3)=123 = T(9,4)=212; alternatively, T(7,4)=81 + T(8,4)=131 = T(9,4)=212.
PROG
(PARI) {T(n, k) = fibonacci(n) * fibonacci(k) + fibonacci(n+1) * fibonacci(k-1)}; /* Michael Somos, Apr 03 2016 */
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Bob Selcoe, Apr 03 2016
STATUS
approved