OFFSET
0,1
COMMENTS
From Wajdi Maaloul, Jun 20 2022: (Start)
a(n) is the number of ways to tile the figure below with squares and dominoes (a strip of length n+2 that contains two vertical strip of height 2 in its first and third tiles).
_ _
|_|_|_|_____ _
|_|_|_|_|_|_|...|_|
(End)
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (1,1).
FORMULA
G.f.: (3+5*x)/(1-x-x^2). - Philippe Deléham, Nov 19 2008
a(n) = F(n+2) + 2*L(n+1), where F(n) and L(n) are the n-th Fibonacci and Lucas number, respectively. - Rigoberto Florez, Jan 29 2020
E.g.f.: exp(-2*x/(1+sqrt(5)))*(-2*(5+6*sqrt(5))+(55+27*sqrt(5))*exp(sqrt(5)*x))/(5*(3+sqrt(5))). - Stefano Spezia, Jan 29 2020 after Rigoberto Florez
a(n) = Lucas(n+3) + Fibonacci(n-2). - Greg Dresden and Steve Warren, Feb 28 2022
MATHEMATICA
LinearRecurrence[{1, 1}, {3, 8}, 40] (* Vladimir Joseph Stephan Orlovsky, Sep 17 2008 *)
Table[2 LucasL[n+1] + Fibonacci[n+2], {n, 0, 40}] (* Rigoberto Florez, Jan 29 2020 *)
PROG
(Magma) a0:=3; a1:=8; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..40]]; // Vincenzo Librandi, Jan 25 2017
(PARI) apply( {A022121(n)=[3, 8]*([0, 1; 1, 1]^n)[, 1]}, [0..30]) \\ M. F. Hasler, Feb 28 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved