OFFSET
1,9
COMMENTS
It is known that a(n) >= 0 for n >= 7. Bellamy and Cadogan call a(n) the "class number" of n, but this is not a good idea as this term is already overworked.
REFERENCES
Bellamy, O. S.; Cadogan, C. C. Subsets of positive integers: their cardinality and maximality properties. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 167--178, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561043 (82b:10006)
R. Honsberger, Mathematical Morsels, MAA, 1978, p. 223.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
MAPLE
Simple-minded Maple program from N. J. A. Sloane, May 30 2012:
f:=proc(n) local i, t1; t1:=ifactors(n)[2]; 1+add( t1[i][1]*t1[i][2], i=1..nops(t1)); end; # this is A036288
g:=proc(n) local i, t1; global f; t1:=n; for i from 1 to 1000 do if t1=8 then RETURN(i-1); fi; t1:=f(t1); od; -1; end; # this is A212813
MATHEMATICA
imax = 11 (* = max term plus 1 *);
a36288[n_] := If[n == 1, 1, Total[Times @@@ FactorInteger[n]] + 1];
a[n_] := Module[{i, k}, For[k = n; i = 1, i <= imax, i++, If[k == 8, Return[i - 1]]; k = a36288[k]]; If[n > 6, Print["imax ", imax, " probably too small"]]; -1];
Array[a, 120] (* Jean-François Alcover, Aug 01 2018 *)
PROG
(Haskell)
a212813 n | n < 7 = -1
| otherwise = fst $ (until ((== 8) . snd))
(\(s, x) -> (s + 1, a036288 x)) (0, n)
-- Reinhard Zumkeller, May 30 2012
(PARI) A212813(n)={ n>8 & for(c=1, 9e9, (n=A036288(n))==8 & return(c)); (n==7)-(n<7) } \\ M. F. Hasler, May 30 2012
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, May 30 2012
STATUS
approved