login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212813
Number of steps for n to reach 8 under iteration of the map i -> A036288(i), or -1 if 8 is never reached.
8
-1, -1, -1, -1, -1, -1, 1, 0, 2, 1, 2, 1, 3, 2, 3, 3, 4, 3, 3, 2, 3, 3, 3, 2, 3, 4, 2, 2, 4, 3, 4, 3, 4, 3, 4, 3, 5, 4, 5, 2, 5, 4, 5, 4, 2, 5, 3, 2, 4, 4, 4, 4, 3, 2, 5, 3, 4, 4, 5, 4, 5, 4, 3, 4, 4, 5, 5, 4, 3, 4, 5, 4, 4, 3, 3, 3, 4, 4, 4, 3, 4, 5, 5, 4, 4, 6, 5, 4, 4, 3, 4, 3, 5, 5, 4, 3, 6, 5, 4, 4, 5, 4, 4, 3, 4, 4, 4, 3, 5, 4, 6, 4, 5, 4, 5, 4, 3, 5, 4
OFFSET
1,9
COMMENTS
It is known that a(n) >= 0 for n >= 7. Bellamy and Cadogan call a(n) the "class number" of n, but this is not a good idea as this term is already overworked.
a(A212911(n)) = n and a(m) < n for m < A212911(n). - Reinhard Zumkeller, May 30 2012
REFERENCES
Bellamy, O. S.; Cadogan, C. C. Subsets of positive integers: their cardinality and maximality properties. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 167--178, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561043 (82b:10006)
R. Honsberger, Mathematical Morsels, MAA, 1978, p. 223.
LINKS
MAPLE
Simple-minded Maple program from N. J. A. Sloane, May 30 2012:
f:=proc(n) local i, t1; t1:=ifactors(n)[2]; 1+add( t1[i][1]*t1[i][2], i=1..nops(t1)); end; # this is A036288
g:=proc(n) local i, t1; global f; t1:=n; for i from 1 to 1000 do if t1=8 then RETURN(i-1); fi; t1:=f(t1); od; -1; end; # this is A212813
MATHEMATICA
imax = 11 (* = max term plus 1 *);
a36288[n_] := If[n == 1, 1, Total[Times @@@ FactorInteger[n]] + 1];
a[n_] := Module[{i, k}, For[k = n; i = 1, i <= imax, i++, If[k == 8, Return[i - 1]]; k = a36288[k]]; If[n > 6, Print["imax ", imax, " probably too small"]]; -1];
Array[a, 120] (* Jean-François Alcover, Aug 01 2018 *)
PROG
(Haskell)
a212813 n | n < 7 = -1
| otherwise = fst $ (until ((== 8) . snd))
(\(s, x) -> (s + 1, a036288 x)) (0, n)
-- Reinhard Zumkeller, May 30 2012
(PARI) A212813(n)={ n>8 & for(c=1, 9e9, (n=A036288(n))==8 & return(c)); (n==7)-(n<7) } \\ M. F. Hasler, May 30 2012
KEYWORD
sign
AUTHOR
N. J. A. Sloane, May 30 2012
STATUS
approved