login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of steps for n to reach 8 under iteration of the map i -> A036288(i), or -1 if 8 is never reached.
8

%I #30 Oct 12 2018 23:34:16

%S -1,-1,-1,-1,-1,-1,1,0,2,1,2,1,3,2,3,3,4,3,3,2,3,3,3,2,3,4,2,2,4,3,4,

%T 3,4,3,4,3,5,4,5,2,5,4,5,4,2,5,3,2,4,4,4,4,3,2,5,3,4,4,5,4,5,4,3,4,4,

%U 5,5,4,3,4,5,4,4,3,3,3,4,4,4,3,4,5,5,4,4,6,5,4,4,3,4,3,5,5,4,3,6,5,4,4,5,4,4,3,4,4,4,3,5,4,6,4,5,4,5,4,3,5,4

%N Number of steps for n to reach 8 under iteration of the map i -> A036288(i), or -1 if 8 is never reached.

%C It is known that a(n) >= 0 for n >= 7. Bellamy and Cadogan call a(n) the "class number" of n, but this is not a good idea as this term is already overworked.

%C a(A212911(n)) = n and a(m) < n for m < A212911(n). - _Reinhard Zumkeller_, May 30 2012

%D Bellamy, O. S.; Cadogan, C. C. Subsets of positive integers: their cardinality and maximality properties. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 167--178, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561043 (82b:10006)

%D R. Honsberger, Mathematical Morsels, MAA, 1978, p. 223.

%H Reinhard Zumkeller, <a href="/A212813/b212813.txt">Table of n, a(n) for n = 1..10000</a>

%p Simple-minded Maple program from _N. J. A. Sloane_, May 30 2012:

%p f:=proc(n) local i,t1; t1:=ifactors(n)[2]; 1+add( t1[i][1]*t1[i][2], i=1..nops(t1)); end; # this is A036288

%p g:=proc(n) local i,t1; global f; t1:=n; for i from 1 to 1000 do if t1=8 then RETURN(i-1); fi; t1:=f(t1); od; -1; end; # this is A212813

%t imax = 11 (* = max term plus 1 *);

%t a36288[n_] := If[n == 1, 1, Total[Times @@@ FactorInteger[n]] + 1];

%t a[n_] := Module[{i, k}, For[k = n; i = 1, i <= imax, i++, If[k == 8, Return[i - 1]]; k = a36288[k]]; If[n > 6, Print["imax ", imax, " probably too small"]]; -1];

%t Array[a, 120] (* _Jean-François Alcover_, Aug 01 2018 *)

%o (Haskell)

%o a212813 n | n < 7 = -1

%o | otherwise = fst $ (until ((== 8) . snd))

%o (\(s, x) -> (s + 1, a036288 x)) (0, n)

%o -- _Reinhard Zumkeller_, May 30 2012

%o (PARI) A212813(n)={ n>8 & for(c=1,9e9,(n=A036288(n))==8 & return(c));(n==7)-(n<7) } \\ _M. F. Hasler_, May 30 2012

%Y Cf. A036288, A212814, A212815, A212816, A212908, A212909, A212911.

%K sign

%O 1,9

%A _N. J. A. Sloane_, May 30 2012