login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271318
Expansion of 1/(-x*sqrt(4*x^2+1)-x^2+1).
1
1, 1, 2, 5, 9, 16, 33, 67, 126, 239, 477, 946, 1809, 3471, 6858, 13515, 26001, 50100, 98577, 193705, 373734, 721691, 1416933, 2779780, 5372001, 10386841, 20366802, 39915887, 77216409, 149422384, 292749633, 573363693, 1109898126
OFFSET
0,3
COMMENTS
a(365) is negative. - Vaclav Kotesovec, Apr 04 2016
LINKS
FORMULA
a(n) = Sum_{k=0..n} Sum_{j=floor(n/2)..(n+k)/2} 4^(j-k)*binomial(k,2*j-n)*binomial((2*j-n)/2,j-k).
D-finite with recurrence: (n-1)*a(n) = -(n-13)*a(n-2) + 3*(5*n-17)*a(n-4) + 12*(n-4)*a(n-6). - Vaclav Kotesovec, Apr 04 2016
a(n) ~ (1 + 1/sqrt(21))/2 * ((3 + sqrt(21))/2)^(n/2) if n is even and a(n) ~ (-1)^((n+1)/2) * 2^(n+7/2) / (25*sqrt(Pi)*n^(3/2)) if n is odd. - Vaclav Kotesovec, Apr 04 2016
MATHEMATICA
CoefficientList[Series[1/(-x*Sqrt[4*x^2+1]-x^2+1), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 04 2016 *)
PROG
(Maxima) a(n):=sum(sum(4^(j-k)*binomial(k, 2*j-n)*binomial((2*j-n)/2, j-k), j, floor(n/2), (n+k)/2), k, 0, n);
(PARI) x='x+O('x^99); Vec(1/(-x*sqrt(4*x^2+1)-x^2+1)) \\ Altug Alkan, Apr 04 2016
CROSSREFS
Sequence in context: A130752 A309331 A059529 * A119676 A348836 A036711
KEYWORD
sign,easy
AUTHOR
Vladimir Kruchinin, Apr 04 2016
STATUS
approved