login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270841
a(1) = 5; a(n) is the sum of |a(m) - m| for m < n.
2
5, 4, 6, 9, 14, 23, 40, 73, 138, 267, 524, 1037, 2062, 4111, 8208, 16401, 32786, 65555, 131092, 262165, 524310, 1048599, 2097176, 4194329, 8388634, 16777243, 33554460, 67108893, 134217758, 268435487, 536870944, 1073741857, 2147483682, 4294967331, 8589934628
OFFSET
1,1
FORMULA
For n > 2, a(n) = a(n - 2) + |a(n - 1) - (n - 1)|
For n > 2, a(n) = 2^(n - 2) + n + 1. - Peter Kagey, Mar 25 2016
From Colin Barker, Mar 28 2016: (Start)
a(n) = 4*a(n-1)-5*a(n-2)+2*a(n-3) for n>4.
G.f.: x*(5-16*x+15*x^2-5*x^3) / ((1-x)^2*(1-2*x)).
(End)
EXAMPLE
a(1) = 5;
a(2) = 4 because |a(1) - 1| = 4
a(3) = 6 because |a(2) - 2| + |a(1) - 1| = 6
a(4) = 9 because |a(3) - 3| + |a(2) - 2| + |a(1) - 1| = 9
(...)
MATHEMATICA
a[1] := 5
a[n_]:= 2^(n - 2) + n + 1 (* Peter Kagey, Mar 25 2016 *)
PROG
(Java)
public static int[] a(int n) {
int[] terms = new int[n];
terms[0] = 0;
terms[1] = 5;
for (int i = 2; i < n; i++) {
int count = 0;
for (int j = 0; j < i; j++) {
count = count + abs(j - terms[j]);
}
terms[i] = count;
}
return terms;
}
(Ruby)
def a270841(n); n == 1 ? 5 : 2**(n - 2) + n + 1 end
# Peter Kagey, Mar 25 2016
(PARI) Vec(x*(5-16*x+15*x^2-5*x^3)/((1-x)^2*(1-2*x)) + O(x^50)) \\ Colin Barker, Mar 28 2016
(PARI) a(n)=if(n>1, 2^(n-2)+n+1, 5) \\ Charles R Greathouse IV, Mar 28 2016
CROSSREFS
Sequence in context: A347185 A345231 A335576 * A097995 A316670 A234745
KEYWORD
easy,nonn
AUTHOR
Alec Jones, Mar 23 2016
EXTENSIONS
More terms from Colin Barker, Mar 28 2016
STATUS
approved