login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335576
Decimal expansion of Mertens constant C(5,2).
1
5, 4, 6, 9, 7, 5, 8, 4, 5, 4, 1, 1, 2, 6, 3, 4, 8, 0, 2, 3, 8, 3, 0, 1, 2, 8, 7, 4, 3, 0, 8, 1, 4, 0, 3, 7, 7, 5, 1, 9, 9, 6, 3, 2, 4, 1, 0, 0, 8, 1, 9, 2, 9, 5, 1, 5, 3, 1, 2, 7, 1, 8, 7, 1, 9, 1, 7, 5, 1, 8, 1, 1, 0, 8, 5, 7, 1, 5, 1, 6, 6, 8, 3, 3, 5, 8, 4, 0, 6, 3, 7, 2, 3, 8, 3, 5, 4, 8, 2, 3
OFFSET
0,1
COMMENTS
First 100 digits from Alessandro Languasco and Alessandro Zaccagnini 2007 p. 4.
LINKS
Alessandro Languasco and Alessandro Zaccagnini, Computation of the Mertens constants - more than 100 correct digits, (2007), 1-134.
FORMULA
A = C(5,1)=1.2252384385390845800576097747492205... see A340839.
B = C(5,2)=0.5469758454112634802383012874308140... this constant.
C = C(5,3)=0.8059510404482678640573768602784309... see A336798.
D = C(5,4)=1.2993645479149779881608400149642659... see A340866.
A*B*C*D = 0.70182435445860646228... = (5/4)*exp(-gamma), where gamma is the Euler-Mascheroni constant A001620.
B = sqrt(2)*5^(3/4)*sqrt(A340127)*exp(-gamma)/(4*sqrt(A340004)*A^2*C).
B = 2*A*D*log((1+sqrt(5))/2)/(C*sqrt(5)*A340794*A340665).
B = A*D*log((1+sqrt(5))/2)^2/(C*Pi*A340213^2).
From Vaclav Kotesovec, Jan 27 2021: (Start)
B*C = 5^(1/4) * exp(-gamma/2) * sqrt(log((1+sqrt(5))/2) / (2 * A340665 * A340794)).
A*D = 5^(3/4) * exp(-gamma/2) * sqrt(A340665 * A340794 / (8 * log((1+sqrt(5))/2))).
(End)
EXAMPLE
0.546975845411263480238301287430814...
KEYWORD
nonn,cons
AUTHOR
Artur Jasinski, Jan 26 2021
STATUS
approved