login
A270419
Denominator of the rational number obtained when the exponents in prime factorization of n are reinterpreted as alternating binary sums (A065620).
12
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2
OFFSET
1,8
COMMENTS
Map n -> A270418(n)/A270419(n) is a bijection from N (1, 2, 3, ...) to the set of positive rationals.
LINKS
FORMULA
Multiplicative with a(p^e) = p^(-A065620(e)) for evil e, a(p^e)=1 for odious e, or equally, a(p^e) = p^(A010059(e) * -A065620(e)).
a(1) = 1, for n > 1, a(n) = a(A028234(n)) * A020639(n)^( A010059(A067029(n)) * -A065620(A067029(n)) ).
Other identities. For all n >= 1:
a(A270436(n)) = 1, a(A270437(n)) = n.
MATHEMATICA
s[n_] := s[n] = If[OddQ[n], -2*s[(n - 1)/2] - 1, 2*s[n/2]]; s[0] = 0; f[p_, e_] := p^If[OddQ[DigitCount[e, 2, 1]], 0, s[e]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 01 2023 *)
PROG
(Scheme, two variants)
(definec (A270419 n) (cond ((= 1 n) 1) (else (* (expt (A020639 n) (* (A010059 (A067029 n)) (- (A065620 (A067029 n))))) (A270419 (A028234 n))))))
(define (A270419 n) (denominator (A270418perA270419 n)))
(definec (A270418perA270419 n) (cond ((= 1 n) 1) (else (* (expt (A020639 n) (A065620 (A067029 n))) (A270418perA270419 (A028234 n))))))
(PARI) A270419(n)={n=factor(n); n[, 2]=apply(A065620, n[, 2]); denominator(factorback(n))} \\ M. F. Hasler, Apr 16 2018
CROSSREFS
Cf. A270418 (gives the numerators).
Cf. A270428 (indices of ones).
Cf. also A270420, A270421, A270436, A270437 and permutation pair A273671/A273672.
Differs from A055229 for the first time at n=32, where a(32)=8, while A055229(32)=2.
Sequence in context: A367698 A367931 A365297 * A275216 A062379 A325625
KEYWORD
nonn,easy,frac,mult,changed
AUTHOR
Antti Karttunen, May 23 2016
STATUS
approved