login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270142
a(n) = product of first k composites, with the i-th composite raised to the d-th power, where k = A055642(n) and d is the i-th digit of n.
1
4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144, 4, 24, 144, 864, 5184, 31104, 186624, 1119744, 6718464, 40310784, 16, 96, 576, 3456, 20736, 124416, 746496, 4478976, 26873856, 161243136, 64, 384, 2304, 13824, 82944, 497664, 2985984, 17915904, 107495424
OFFSET
1,1
COMMENTS
All terms are multiples of 4, since A002808(1) = 4 and the most significant digit of n is always nonzero.
Does a term exist such that a(n) = n? Such a number would be the analog of a Meertens number when raising composites to the powers of the digits of n instead of raising primes to the powers of the digits.
From Chai Wah Wu, Dec 15 2022: (Start)
If a(n) is defined using digits of n in base b, then there are bases b and numbers n such that a(n) = n. For instance:
base b n
------------------------------------------------
2 4, 24, 36, 24192000, 85155840
3 2592
4 4, 103680
6 20736
8 16, 256, 13824
12 1327104
16 21233664
23 24
24 746496
(End)
LINKS
EXAMPLE
a(12) = 144, since A002808(1) = 4, A002808(2) = 6 and 4^1 * 6^2 = 144.
PROG
(PARI) composite(n) = my(i=0, c=2); while(1, if(!ispseudoprime(c), i++); if(i==n, return(c)); c++)
compopowerprod(n) = my(d=digits(n)); for(k=1, #d, p=prod(i=1, #d, composite(i)^d[i])); p
a(n) = compopowerprod(n)
(Python)
from math import prod
from sympy import composite
def A270142(n): return prod(composite(i)**int(d) for i, d in enumerate(str(n), 1)) # Chai Wah Wu, Dec 09 2022
CROSSREFS
Sequence in context: A215877 A206450 A294452 * A000302 A262710 A050734
KEYWORD
nonn,base,easy
AUTHOR
Felix Fröhlich, Mar 12 2016
STATUS
approved