OFFSET
1,1
COMMENTS
All terms are multiples of 4, since A002808(1) = 4 and the most significant digit of n is always nonzero.
Does a term exist such that a(n) = n? Such a number would be the analog of a Meertens number when raising composites to the powers of the digits of n instead of raising primes to the powers of the digits.
From Chai Wah Wu, Dec 15 2022: (Start)
If a(n) is defined using digits of n in base b, then there are bases b and numbers n such that a(n) = n. For instance:
base b n
------------------------------------------------
2 4, 24, 36, 24192000, 85155840
3 2592
4 4, 103680
6 20736
8 16, 256, 13824
12 1327104
16 21233664
23 24
24 746496
(End)
LINKS
Felix Fröhlich, Table of n, a(n) for n = 1..10000
PROG
(PARI) composite(n) = my(i=0, c=2); while(1, if(!ispseudoprime(c), i++); if(i==n, return(c)); c++)
compopowerprod(n) = my(d=digits(n)); for(k=1, #d, p=prod(i=1, #d, composite(i)^d[i])); p
a(n) = compopowerprod(n)
(Python)
from math import prod
from sympy import composite
def A270142(n): return prod(composite(i)**int(d) for i, d in enumerate(str(n), 1)) # Chai Wah Wu, Dec 09 2022
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Felix Fröhlich, Mar 12 2016
STATUS
approved