login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270144
a(n) = Sum_{k=0..n} (-1)^(k+1) * k * A000009(n-k).
3
0, 1, -1, 2, -1, 2, 0, 2, 1, 2, 3, 2, 5, 3, 7, 5, 10, 7, 14, 11, 18, 17, 24, 24, 32, 34, 42, 47, 56, 63, 74, 85, 96, 113, 126, 147, 165, 191, 213, 247, 275, 316, 353, 404, 449, 514, 571, 648, 723, 816, 909, 1024, 1140, 1278, 1424, 1592, 1770, 1976, 2195, 2442
OFFSET
0,4
COMMENTS
Convolution of A000009 and A181983.
LINKS
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k+1) * (n-k) * A000009(k).
a(n) ~ A000009(n)/4.
a(n) ~ exp(Pi*sqrt(n/3)) / (16*3^(1/4)*n^(3/4)).
G.f.: x/(1+x)^2 * Product_{k>=1} (1+x^k).
MATHEMATICA
Table[Sum[(-1)^(n-k+1)*PartitionsQ[k]*(n-k), {k, 0, n}], {n, 0, 100}]
nmax = 100; CoefficientList[Series[x/(1 + x)^2 * Product[(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
sign
AUTHOR
Vaclav Kotesovec, Mar 12 2016
STATUS
approved