|
|
A294452
|
|
Expansion of x*(16*x^6+20*x^4-32*x^3+24*x^2-8*x+1) / ((-1+2*x)^2*(2*x^2-4*x+1)^2).
|
|
1
|
|
|
0, 1, 4, 16, 64, 256, 1024, 4096, 16320, 64512, 252416, 976896, 3740928, 14186496, 53330944, 198946816, 737156096, 2715254784, 9949593600, 36292198400, 131845099520, 477257695232, 1722054197248, 6195670220800, 22233100238848, 79595401641984, 284344067424256, 1013792167690240
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Colin Barker, Table of n, a(n) for n = 0..1000
Benjamin Hackl, C. Heuberger, H. Prodinger, Reductions of Binary Trees and Lattice Paths induced by the Register Function, arXiv preprint arXiv:1612.07286 [math.CO], 2016. (See L_2(z).)
Index entries for linear recurrences with constant coefficients, signature (12,-56,128,-148,80,-16).
|
|
FORMULA
|
a(n) = 12*a(n-1) - 56*a(n-2) + 128*a(n-3) - 148*a(n-4) + 80*a(n-5) - 16*a(n-6) for n>5. - Colin Barker, Nov 23 2017
|
|
PROG
|
(PARI) concat(0, Vec(x*(1 - 8*x + 24*x^2 - 32*x^3 + 20*x^4 + 16*x^6) / ((1 - 2*x)^2*(1 - 4*x + 2*x^2)^2) + O(x^40))) \\ Colin Barker, Nov 23 2017
|
|
CROSSREFS
|
Sequence in context: A077821 A215877 A206450 * A270142 A000302 A262710
Adjacent sequences: A294449 A294450 A294451 * A294453 A294454 A294455
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane, Nov 22 2017
|
|
STATUS
|
approved
|
|
|
|